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ABSTRACT

Laser velocimetry was utilized to map the velocity field in serpentine turbine blade
cooling passages with skewed trip strips. The measurements were obtained at Reynolds and
Rotation numbers of 25,000 and 0.24 to assess the influence of trips, passage curvature and
Coriolis force on the flow field.

The interaction of the secondary flows induced by skewed trips with the passage
rotation produces a swirling vortex and a comer recirculation zone. With trips skewed at
+45°, the secondary flows remain unaltered as the cross-flow proceeds from the passage to
the tum. However, the flow characteristics at these locations differ when trips are skewed at
-45°. Changes in the flow structure are expected to augment heat transfer, in agreement with
the heat transfer measurements of Johnson, et al. (1994). The present results show that trips
skewed at -45° in the outward flow passage and trips skewed at +45° in the inward flow
passage maximize heat transfer. Details of the present measurements were related to the heat

transfer measurements of Johnson, et al. to relate fluid flow and heat transfer measurements.



1. INTRODUCTION

In advanced gas turbine engines increased temperatures, stage pressure ratios and
rotor speeds are used to increase thrust/weight ratios and reduce specific fuel consumption.
Consequently, the turbine is subjected to increased heat load and stress and efficient internal
cooling is essential to maintain turbine blade structural integrity. Blade rotation gives rise to
Coriolis and buoyancy forces which can significantly alter the heat transfer in coolant passages
due to development of tangential (Coriolis) and radial (buoyant) secondary flows. The
process is further complicated by the presence of secondary flows arising from the sharp turns
in the cooling passage. A better understanding of Coriolis and buoyancy effects and the
capability to predict their influence on heat transfer is necessary for efficient management of
cooling air.

The complex coupling of Coriolis and buoyancy forces has prompted many
investigators to study the heat transfer characteristics of rotating cooling passages. Guidez
(1989), Hajek, et al. (1991), Wagner, et al. (1991), Yang, et al. (1992) and Mochizuki, et al.
(1994) conducted experimental studies on heat transfer perfomance in rotating serpentine
passages of square cross section with smooth walls. These results revealed a significant
increase in heat transfer at the turns and showed considerable differences between straight
passages having radially inward and outward flows. These references focused only on heat
transfer measurements and did not include the velocity field which drives convective heat
transfer. A study which focused on the velocity field was reported by Tse, et al. (1994),
McGrath and Tse (1995) and Tse and McGrath (1995) for flow in smooth wall turbine
cooling passages. These velocity field results explained many of the heat transfer results noted
by previous investigators.

In practice, cooling passages contain trips, which create secondary flow to augment
heat transfer. The heat transfer results of Taslim, et al. (1991a, 1991b), Johnson, et al. (1993,
1994) and Wagner, et al. (1992) indicate that the secondary flow produced by trips and trip
orientation have large effects on heat transfer. The large decrease in heat transfer in the inlet
region measured in models with smooth walls does not occur in models with trips. The effect

of density ratio upon the resulting heat transfer is less for skewed trips than for trips normal to



the cross-flow. The effect of flow direction on heat transfer is less for models with trips than
for models with smooth walls,

As part of the Integrated High Performance Turbine Engine Technology (IHPTET)
goals, turbines would operate at near stoichiometric, i.e., 2200-2500 K, inlet temperatures,
maintain efficiencies in the 88-94% range, and require total coolant flows of only 5% of the
engine air flow rate. To attain these goals, a thorough understanding of the effect of rotation
upon heat transfer and flow in turbine blade coolant passages is mandatory. Further
advancement of blade cooling schemes beyond the current state-of-art requires an advance in
the knowledge base of convective heat transfer in rotating ribbed channels. The objective of
the experimental portion of the current program was to acquire benchmark quality velocity
data in rotating coolant passages with ribbed walls. The results were used to quantify the
influence of Coriolis effects and to explain the heat transfer phenomena observed by Johnson,
et al. (1993, 1994).

Streamwise (radial), tangential and cross-stream velocities were obtained in rotating
serpentine passages representative of internal cooling passages in modern gas turbine engines.
Mean and rms quantities of these velocity components were obtained by laser-Doppler
velocimetry (LDV). The measurements were obtained with a refractive-index-matching
(RIM) experimental approach. Since the experimental program is isothermal and
incompressible, it isolates the effect of Coriolis forces. The effects of buoyancy are addressed
in the computational portion of the program, Steuber (1995).

Flow configuration, instrumentation and its associated uncertainties are described in
Section 2. Results and their implications on heat transfer for two inlet conditions are

presented and discussed in Sections 3 and 4. Conclusions are stated in Section S.

2. FLOW CONFIGURATION AND INSTRUMENTATION

Figure 2.1 shows the flow circuit for the rotating turbine blade rig. Fluid was
delivered to the cooling passage by a pump at a flow rate of 8.8 gpm and was monitored by a
turbine meter to a precision of £3%. The temperature was monitored downstream of the

pump and was maintained at 26°C, £0.2°C, by a temperature controller. The fluid was a



mixture of 70% turpentine and 30% Tetralin (by volume), which had a refractive index of 1.49
at 26°C for green light at 514.5 nm. This refractive index was identical to that of the acrylic
model and allowed the beam to pass from one medium to the other without any distortion.

A shaft encoder was fitted at one end of the shaft to monitor the angular position and
rotational speed of 617 rpm to precision of +0.018° and +1%, respectively. The fluid had a
density of 894 kg m> and a kinematic viscosity of 1.74 x 10°ms. The flow rate and
rotational speed corresponded to a Reynolds number of 25,000 and a Rotation number of
0.24. Stationary experiments were conducted to provide reference conditions to quantify the
effect of rotation. The Reynolds and Rotation numbers are of direct practical relevance to
modern turbines.

The two inlet configurations of the turbine blade passage model are given in Figures
2.2 and 2.3, and the measuring plane locations are given in Tables 2.1 and 2.2. The model has
a four-pass passage with three 180° turns and is similar to that of Wagner, et al. (1994). This
geometry was chosen to allow analysis of the velocity measurements corresponding to the
heat transfer results obtained by Wagner, et al. (1994). The differences between UTRC and
SRA rigs are shown in Figure 2.4. The first two passes of the passage have a rectangular
cross-section of 1.0” x 0.5”. The last two passes have a square cross-section of 0.5” x 0.5
Trips with a streamwise pitch to trip height (P/e) =5 and trip height to coolant passage width
(¢/2Z) = 0.1, were machined along the leading and trailing walls. These geometries are typical
of those used in turbine blade coolant passages. The trips on the walls are staggered by the
half-pitch. The trips are skewed at +45° to the cross-flow, as shown in the figure, and this
allows the effect of trip orientation to be examined. Experiments were conducted with flow
entering the model through the 0.5” x 0.5” square passage (Passage 1) and the 1.0” x 0.5”
rectangular passage (Passage 2) to examine the effect of passage configuration.

The streamwise and tangential velocity components were obtained by the laser-
Doppler velocimeter set-up shown in Figure 2.5. It made use of diffraction grating optics,
together with an Argon ion laser operating at 200mW and 514.5nm. The measurement
volume was projected into the rotating passage by a mirror at 45° with respect to the laser
axis. The optical characteristics of the velocimeter are given in Table 2.3.1. The cross-

stream velocity component was obtained by the laser-Doppler velocimeter set-up shown in



Figure 2.6. It made use of the same optics with the Argon ion laser operating at 400mW and
514.5nm. The optical characteristics of the velocimeter are given in Table 2.3.2. The optics
were mounted on a mechanism that traversed the measurement volume in three orthogonal
directions with a maximum uncertainty of 0.02mm. The output of the photomultiplier was
processed by a TSI 1990C counter. The counter and the shaft encoder were interfaced to a
microcomputer, which recorded the angular position for every validated Doppler burst. The
results at each angular position were then ensemble-averaged to yield mean and rms velocity
profiles as a function of passage angle. The processing software continuously displayed the
sample size curve during the data acquisition process and allowed the user to terminate the
procedure after a statistically meaningful sample was attained. The mean and rms velocities in
each ensemble-average was evaluated with statistical uncertainties of less than 2% and 5%,
respectively.

Figures 2.2 and 2.3 show the measurement locations for both inlet configurations.
Details of these locations are given in Tables 2.4 and 2.5. Measurements were obtained at
Reynolds (Re) and Rotation (Ro) numbers of 25,000 and 0.24. The Reynolds number was
based on the hydraulic diameter and the bulk mean velocity of the half-inch square passage.
The mean and rms velocities were ensemble-averaged over pre-selected angle windows of
0.036° + 2% by means of an index and a TTL pulse train from an encoder with 5000 pulses
per revolution and external quadrupling. This angular resolution corresponds to a spatial
resolution of roughly 0.40 mm * 2% at radial positions between 0.557 and 0.738m.
Stationary measurements were obtained with approximately 100 grid points. Rotating
measurements were obtained with over 200 grid points. Details of each measurement plane
are given on the data files submitted to NASA.

Streamwise distance (x) from the entrance is normalized by the hydraulic diameter (D).
Vertical (y) and tangential (z) distances are normalized by the half passage height (H) and
width (Z), respectively. For the x coordinate and U component, streamwise is positive. In the
straight passage, the y coordinate and V component are positive against gravity. At the turn,
the concave side is positive. The z coordinate and W component are positive in the direction
of rotation. The velocities are normalized by the bulk mean velocity (Us) of 3.44 ms”, based

on the half-inch square passage.



NOMENCLATURE - CHAPTERS 3 AND 4

D Hydraulic diameter

e Trip height

H Half passage height

P Trip spacing

Nu Nusselt number

Nuo Reference Nusselt number

R Average model radius

Re Reynolds number

Ro Rotation number

8] Streamwise (radial) velocity

Up Bulk mean velocity

U, Passage mean velocity

v Vertical or cross-stream velocity
w Tangential velocity

X Streamwise coordinate

y Vertical or cross-stream velocity coordinate
z Tangential coordinate

V4 Half passage width



3. RESULTS AND DISCUSSION - PASSAGE 1.
3.1  Stationary measurements

Figures 3.1 to 3.3 show the velocities in the first passage. At 1 D downstream of the
inlet, Figure 3.1.1, the streamwise velocities show an almost uniform distribution. The high
velocity region, 1.1 Uy, is close to the lower wall. The vertical and tangential velocities,
Figure 3.1.2, in the lower half of the passage are close to zero. The maximum cross-flow
plane velocities are 0.18 U, and -0.15 Uy.  They occur in the upper half of the passage where
the streamwise velocities are approximately 0.9 U,. The velocity characteristics are consistent
with the flow exiting an S-bend, the bend upstream of the inlet is an S-bend. Figs. 3.1.3 and
3.1.4 show rms velocities and will be discussed later.

At 7 D downstream of the inlet, Figure 3.2.1, the high velocity region (~1.65 U,) has
shifted to the upper wall. The streamwise flow development is large (>0.65 U, within 6 D)
and this is attributed to strong secondary flow due to the trips. The vector plot, Figure 3.3.2,
shows a two-vortex structure with downward velocity reaching 0.95 U, near the two walls
and upward velocity of around 0.6 Uy in the center of the passage. Re-attachment of the
cross-flow can be seen at y/H = 0.6 and 0.8.

At 1 D upstream of the first turn, Figure 3.3.1, there are two high velocity regions
(both reaching 1.50 U,) close to the side walls. Large streamwise flow development is also
present in the last 6 D of the first passage. Comparison of Figures 3.3.2 and 3.2.2 indicates
the strength of the vortices are equal. The trips lead to the development of asymptotic
secondary flows.
| Figure 3.4 shows the velocities in the first tumn. The streamwise velocity contours,
Figure 3.4.1, show that the high velocity region is close to the convex (suction) side of the
turn. It achieves a maximum value 1.65 U,. Qualitatively, the flow in the first turn exhibits
inviscid behavior. The cross-stream velocity contours of Figure 3.4.2 are consistent with the
flow visualization of Mochizuki, et al. (1994). Their results show that flow progresses from
the first passage to the second passage as two separate streams. The first stream is close to
the lower wall. It bifurcates into another two streams on impact with the concave wall.
These streams separately propagate toward the side walls, then along the walls and to the

second passage through the inside of the turn. Their signatures are evident in the negative



cross-stream velocities of Figure 3.4.2. The second stream is located above the center of the
passage. It sweeps along the concave surface and continues to the second passage along the
outside of the tumn. The signature of this stream is evident in the positive cross-stream
velocities of Figure 3.4.2.

Figures 3.5 to 3.6 show the velocities in the second passage. At 1 D downstream of
the first turn, Figure 3.5.1, the high velocity region (1.55 Uy) is close to the upper wall. The
convection of the high velocity region to the upper wall at the exit of the first tum is attributed
to the secondary flow generated by the turn. Figure 3.5.2 shows that the two-vortex structure
at the exit of the turn is considerably weakened. The maximum magnitude of the upward
velocity at the center of the passage is reduced from 0.60 Uy to 0.25 U,. The maximum
downward velocity near the walls is reduced from -0.85 Us to -0.70 U. The secondary flow
induced by the turn opposes the vortices generated in the first passage.

At 1 D upstream of the second turn, Figure 3.6.1, the high velocity regions (1.55 Uy)
are close to the side walls. The velocity characteristics are similar to those at the end of the
first passage, Figure 3.3.1. The flow at the end of both passages is fully developed. The
convection of the high velocity region from the upper wall at the beginning of the second
passage to the side walls towards the end of the second passage stems from the two-vortex
structure. Figures 3.3.2 and 3.6.2 show that the two-vortex structures in the first and second
passages circulate in the same direction with similar strength.

Figure 3.7 shows the velocities in the second tumn. The streamwise velocity contours,
Figure 3.7.1 show that the high velocity region (1.0 U,) is close to the convex (suction) side
of the turn. The maximum velocity is much lower than that observed in the first turn, 1.65 Us,
because of the streamwise recirculation bubble at the exit of the turn, Figure 3.8.1. The
recirculation bubble at the exit of the turn induces a more gradual flow turning. In addition, it
directs the cross-flow toward the concave side of the bend. The cross-stream velocities
shown in Figure 3.7.2 are all positive. In the first turn, Figure 3.4.2, the cross-stream
velocities near the convex surface are negative. Thus, the differences between the flow in the
first and second turns are attributed to sudden expansion from the second to the third passage.

Figures 3.8 and 3.9 show the velocities in the third passage. At 1 D downstream of

the second turn, Figure 3.8.1, the high velocity region (1.4 U) is close to the upper wall. The



passage mean velocity, U, is 0.5 U, because of the expansion in flow area. The flow velocity
near the upper wall is almost 3.0 U,. The sharp turning, coupled with the expansion in flow
area, gives rise to the reverse flow which occurs near the lower wall. It reaches a maximum
value of -0.25 U, and extends to the 0.4 H location. The vertical velocities, Figure 3.8.2, are
approximately 0.2 U, and are mainly downward.

At 1 D upstream of the third turn, Figure 3.9.1, the high velocity region remains close
to the upper wall. However, the maximum velocity has been reduced from 1.4 U, to 0.8 Us.
The vertical convection in the third passage is substantial. Figure 3.9.2 shows the downward
velocity reaching 0.35 U, near the side walls and the upward velocity reaching 0.25 Uy in the
center, indicating the presence of a two-vortex flow pattern. The two-vortex pattern
circulates in the same direction as that in the first passage.

Figures 3.10 and 3.11 show the velocities obtained in the fourth passage. At 1D
downstream of the third turn, Figure 3.10.1, there is a high velocity region of magnitude
1.25 U, close to the upper wall. Reverse flow occurs close to the lower wall. It reaches a
maximum value of -0.35 U, and extends to the 0.25 H location. Figure 3.10.2 shows upward
velocity of 0.5 U, near the side walls. The downward velocity is of the order of -0.4 Uy in the
upper half of the passage but it is close to the trailing wall. This indicates separation of cross-
flow in the inter-ribbed region on the leading side and re-attachment of cross-flow in the inter-
ribbed region on the trailing side.

At 1 D upstream of the exit, Figure 3.11.1, the high velocity region (0.8 Uy) is close to
the lower wall. The convection of the high velocity region from the upper wall at the
beginning of the passage to the lower wall at the end of the passage is due to the two-vortex
structure, Figure 3.11.2. The direction of the vortex is reversed from that found in the first
passage. The near wall vertical velocity is upward and that in the middle of the passage is
downward. The reversal in the recirculation direction is assocated with the reversal of the
flow direction. The double vortex generated by the ribs redistributes the cross-flow to the
lower wall. This leads to a more drastic change in the primary flow characteristics.

The rms velocities of the streamwise and vertical components are of the order of 10 to
20% in the straight passages (Figures 3.x.3 and 3.x.4 of Figures 3.1, 3.2, 3.3, 3.6, 3.9 and
3.11). They rise to 15 to 25% in the first and second turns (Figures 3.x.3 and 3.x.4 of Figures
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3.4, 3.7). The rms velocities are highest at 1 D downstream of turns (Figures 3.x.3 and 3.x.4
of Figufes 3.5, 3.8 3.10). They reach a maximum value of 35%.

The velocity measurements will be further analyzed in relation to the heat transfer
results obtained by Wagner, et al. (1992) and Johnson, et al. (1994) in Section 3.3.

3.2 Rotating measurements

Figures 3.12 to 3.16 show the velocities in the first passage. At x/D =1, Figure
3.12.1, the high velocity region occurs on the leading side of the passage near the upper wall.
The maximum streamwise velocity reaches 1.35 U,. Stationary measurements, Figure 3.1.1,
indicate that the high velocity region is near the lower wall. Rotation alters the inlet
condition.

Figures 3.13.1, 3.14.1, 3.15.1 and 3.16.1 show that the maximum streamwise velocity
between x/D = 4 and x/D = 12 is within + 5% of 1.6 Us. The results of Tse, et al. (1994)
show that the maximum streamwise velocity reaches 1.2 Uy at the end of the passage in a
0.5” x 0.5” square passage with smooth walls. The present results show that the maximum
streamwise velocity reaches its asymptotic value after 4 D.

The streamwise velocities at x/D = 4 with rotation, Figures 3.13.1, are similar to those
obtained at x/D =7 without rotation, Figure 3.2.1. The upward convection of cross-flow
induced by trips skewed at -45° is not significantly affected by rotation in the first 4 D A
comparison of Figures 3.14.1 and 3.2.1 shows that model rotation shifts the high velocity
region from the upper wall to the trailing surface. As expected, rotation induces a net
tangential convection from the leading (low pressure) to (high pressure) trailing side. Figures
3.15.1 and 3.16.1 show the development of streamwise velocity in the last 4 D of the first
passage associated with secondary flows induced by trips skewed at -45° and rotation. The
cross-flow continues to shift toward the high pressure side. Comparison of Figures 3.15.1,
3.16.1, 3.15.2 and 3.16.2 shows that the high velocity regions occur at the eye of the swirling
vortex.

Figure 3.12.2 shows positive tangential velocity near the upper and lower wall and
negative tangential velocity at the center of the passage. The two-vortex structure associated

with rotation has been established at /D = 1. The maximum positive and negative velocities

11



reach +0.18 U,. The lower vortex extends above the center of the passage. This is consistent
with convection of the cross-flow to the upper half of the passage observed in the streamwise
velocity measurements, Figure 3.12.1. Figure 3.13.2 shows positive tangential velocity near
the lower wall and negative tangential velocity above the center of the passage. The negative
velocity extends to the upper wall, indicating further expansion of the lower vortex at x/D = 4.

Figures 3.14.2, 3.15.2 and 3.16.2 show the secondary flows at x’D=7, 10 and 12.
With clockwise rotation of the rig (viewed from the top), the combination of outward flow
and trips skewed at -45° generates counter-clockwise swirl (viewed radially outward) and a
comer recirculation zone. The stationary measurements show that the secondary flow in the
first passage is characterized by the two-vortex structure of Figure 3.14.3. Rotation induces a
second two-vortex structure, Figure 3.14.4. Each structure in Figures 3.14.3 and 3.14.4 has a
clockwise circulating vortex and a counter-clockwise circulating vortex. The two counter-
clockwise vortices reinforce each other and give rise to the counter-clockwise swirl observed
in Figures 3.14.2, 3.15.2 and 3.16.2. The vortices circulating in the clockwise direction are
compressed to form a corner recirculation. The maximum tangential velocities at x'D =4, 7,
10, and 12 are respectively 0.48, 0.65, 0.71, and 0.72 U,. The secondary flow becomes
asymptotic by the end of the first passage.

The study of Prakash and Zerkle (1993) shows that flow in a rectangular duct with
normal trip strips and an aspect ratio (H/Z) of 0.5 is characterized by a two-vortex structure
for Ro = 0.12. Coriolis effects are less pronounced in a ribbed passage compared to a smooth
wall passage. Separation and re-attachment of the cross-flow in the inter-rib region prevents
Coriolis effects from reaching the walls. Separation and re-attachment of the cross-flow occur
on both the leading surface and the trailing surface at alternate intervals. Augmentation of
heat transfer stems from re-attachment of the cross-flow, which brings the cool cross-flow to
the surface.

However, the flow in a square duct with skewed trip strips is characterized by a large
counter-clockwise swirl bubble and a small corner recirculation for Ro = 0.24, Figures 3.14.2,
3.15.2 and 3.16.2. The counter-clockwise swirl and comner recirculation flow structure leads
to re-attachment of the cross-flow in the upper and lower corners of the leading surface and

separation of the cross-flow in the center region of the leading surface. Separation and re-
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attachment of the cross-flow on the trailing surface is less noticeable because of the high
vertical velocity associated with the strong swirl. The difference between the secondary flow
characteristics observed here and those evaluated from the theoretical analysis of Prakash and
Zerkle (1993) stems from differences in trip orientation and passage configuration.

Figure 3.17 shows the velocities in the first turn. Rotation reduces the maximum
velocity at the turn from 1.65 Us, Figure 3.4.1, to 0.9 Uy, Figure 3.17.1. In addition, it shifts
the high velocity region from the convex side to the trailing side. The ring structure
associated with swirl is less noticeable in Passage 1 than in Passage 2, Figure 421.1. The
flow in the first turn of Passage 1 is less sensitive to secondary flow than that in Passage 2
because of the increase in velocity associated with the reduction in flow area. Figure 3.17.2
shows that clockwise swirl (viewed from the downstream direction) is present at the turn.
The swirl in the first passage and the first turn are in the same direction (counter-clockwise)
when they are viewed from the upstream direction. The swirl level at the turn is higher than
that in the first passage. The outward flow on the trailing side is reinforced by centrifugal
force. The momentum is transferred to the inward flow on the leading side by convection.

The swirl at the first turn is much stronger than that in Tse, et al. (1994) and McGrath
and Tse (1995) in a turn with a square cross-section. This is partly attributed to the difference
between the aspect ratio of the turn and partly to the presence of swirl before the turn. The
tangential velocities in the present and the previous investigations are of similar magnitudes.
The maximum cross-stream velocity (1.4 Up) is 200% higher in the present case because of a
50% increase in the aspect ratio of the turn. In the present case, swirl already exists in the
first passage, but in Tse, et al. (1994) and McGrath and Tse (1995) the flow is characterized
by the two-vortex structure induced by Coriolis effects. The velocity vector in y/H = -0.8 of
Figure 3.17.2 shows that, for a turn with a radius of 3.05 mm, some flow propagates to the
second passage along the leading side of the turn. Tse, et al. (1994) and McGrath and Tse
(1995) show that, for a tun with a radius of 15 mm, the flow on the leading side of the turn is
convected back to the trailing wall along the convex wall.

The corner recirculation zone in the first passage, Figures 3.14.2, 3.15.2, 3.16.2, is
eliminated by the expansion of the swirl bubble, Figure 3.17.2. The strong inward velocity on

the leading side acts as a blockage to the flow discharging from the first passage. It induces a
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contraction and forces the cross-flow to propagate to the second passage along the trailing
side. Consequently, the streamwise velocities on the trailing side of the turn are greater than
those on the leading side, Figure 3.16.1.

Figures 3.18 to 3.21 show the velocities in the second passage. At 1 D downstream of
the first turn, Figure 3.18.1, the maximum streamwise velocity reaches a value of 1.55 Uy and
is located close to the lower wall. This is consistent with the flow visualization obtained in the
sharp turn of a stationary passage with small radius of curvature, Mochizuki, et al. (1994).
The present results show that the high velocity region is shifted laterally to the trailing side
because of rotation.

Figures 3.19.1, 3.20.1 and 3.21.1 show that the maximum velocity in all of these
locations remains within +5% of the maximum velocity existing in the first turn (1.55 Us). Tse,
et al. (1994) show that in a 0.5” x 0.5” square passage with smooth walls, the maximum
streamwise velocity reaches 1.5 Uy at the exit of the first turn and decays to 1.2 U, towards
the end of the passage. The secondary flows induced by trips skewed at +45° and rotation in
the second passage are as strong as those induced by the first tun and rotation. This is
evident in the secondary flow characteristics shown in Figures 3.17.2, 3.20.2 and 3.21.2.

Figures 3.18.1 and 3.19.1 show that rotation shifts the high velocity region from the
trailing side toward the leading side. Rotation induces a net tangential convection from the
low pressure surface to the high pressure surface and the effect is noticeable within 3 D
downstream of the turn. The redistribution of the cross-flow is consistent with the secondary
flow characteristics described in Figure 3.19.2. Figures 3.20.1 and 3.21.1 show fhe
development of streamwise velocity in the last 2 D of the second passage associated with
secondary flows induced by trips skewed at +45° and rotation. The cross-flow continues to
shift toward the high pressure side. Comparison of Figures 3.20.1, 3.21.1, 3.20.2 and 3.21.2
shows that, similar to the first passage, the high velocity regions in the second passage occur
at the eye of the swirling vortex.

Figures 3.18.2 and 3.19.2 show the secondary flow characteristics at 1 and 3D
downstream of the first turn. The cross-stream component can not be obtained at y/H = +0.8
for D= 17.5 and at y/H = +0.6 and 0.8 for x'D= 19.5. At these locations only the

tangential components are plotted so vectors do not include the vertical flow component.
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They only present tangential velocity component information. The flow in the second passage
is characterized by a clockwise swirl (viewed radially outward) and a corner recirculation.
The second passage is an inward flow passage with trips skewed at +45°.  Stationary
measurements show that inward flow and trips skewed at +45° generate the two-vortex
structure of Figure 3.19.3. The direction of Coriolis force is reversed, Figure 3.19.4. In the
second passage, the two clockwise vortices reinforce each other and give rise to the clockwise
swirl, Figure 3.19.2. The vortices circulating in the counter-clockwise direction are
compressed to form a corner recirculation. The mean tangential velocity contours at locations
D9 and D10, Figures 3.20.2 and 3.21.2, are consistent with those associated with the vectors
of Figures 3.18.2 and 3.19.2. Thus, the entire second passage is characterized by a clockwise
swirl and a corner recirculation.

Figure 3.22 shows the secondary flow in the second turn. A large counter-clockwise
swirl (viewed from the downstream direction) on the trailing side and a corner recirculation on
the leading side near the concave wall are evident. The swirl in the second passage and the
second turn are in the same direction (clockwise) when they are viewed from the upstream
direction. However, the comer recirculation in the passage is on the trailing side and that in
the turn is on the leading side. The corner recirculation induced by the trips collapses at the
turn. The inward flow on the leading side of the second turn is retarded by centrifugal force.
This induces a new corner recirculation zone close to the concave surface of the turn.

The comer recirculation in the second turn is much stronger than that in the first.
Centrifugal force directs flow to the concave surface in the first turn and weakens the corner
recirculation. It directs flow away from the concave surface in the second turn and
strengthens the comer recirculation. The level of swirl in the first turn is higher than that in
the second. This partly stems from retardation of the flow on the leading side by centrifugal
force and from reduction of Coriolis effects. In the second turn, Coriolis forces are weaker
than those at the first because it has a smaller radius.

Figures 3.23 and 3.24 show the streamwise velocities in the third passage. At 1D
downstream of the second turn, Figures 3.23, the maximum velocity reaches 0.8 Uy and
occurs on the trailing side of the passage. Tse, et al. (1994) show that the high velocity at the

exit of the second turn is on the leading (low pressure) side because of the Coriolis effect
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associated with the upstream inward flow passage. In the present investigation, the cross-
flow on the trailing side of the turn propagates to the third passage because of lack of
confinement associated with the sharp turn. In Tse, et al. (1994), the cross-flow on the
trailing side of the turn is convected back to the leading side along the convex surface before
it can proceed to the third passage because of the confinement induced by the gradual tum.
The distortions of the high velocity region on the trailing side stem from separation and re-
attachment of cross-flow associated with the trips. The signature of the comer recirculation
on the concave side of the second turn is evident in the high velocity pocket on the upper
comer of the leading side.

At 6 D downstream of the second turn, Figure 3.24, the maximum streamwise velocity
reaches 0.7 U, and occurs on the leading side of the passage near the lower wall. The general
characteristics of swirl and comer recirculation structure observed in the first passage
(0.5” x 0.5 is also present in the third passage (1.0” x 0.5”); the interaction of secondary
flows induced by trips skewed at -45° (Figure 3.24.2) and rotation (Figure 3.24.3) leads to
expansion of the counter-clockwise vortex and compression of the clockwise vortex (Figure

3.24.4).

3.3 Relationship with heat transfer results

This section analyzes the velocity measurements in relation to the heat transfer results
of Johnson, et al. (1994). The increases and decreases in heat transfer quoted in this section
are relative to the stationary reference Nusselt number, Nu,. Both the velocity and heat
transfer experiments were conducted with Reynolds and Rotation numbers of 25,000 and
0.24, respectively.

The heat transfer results of Johnson, et al. (1994) were obtained in a 0.5” x 0.5”
square duct with trips skewed at -45° in the first passage and +45° in the second. The trip
streamwise pitch to trip height (P/e), trip height to coolant passage width (e/2Z) and a radius
ratio at the average model radius (R/D) were 10, 0.1 and 49, respectively. Their first turn has

a radius of 15.0 mm. In the present experiment, velocity measurements were obtained in a

16



0.5” x 0.5” passage with trips skewed at +45°. The ratios of P/e, e/2Z and R/D were 5, 0.1
and 53, respectively. The first turn had a radius of 3.05 mm.

3.3.1 Stationary ribbed-wall heat transfer in relation to reference

Johnson, et al. (1994), show that the heat transfer from surfaces with skewed trips is
100 to 200% higher than that with smooth surfaces, even in the absence of rotation. The
increase in surface area (5% according to Johnson, et al. (1994)) associated with the trips, and
the increase in flow velocity (3%), due to the blockage of the trips, will contribute to the
increase in heat transfer. However, their contributions are expected to be small and can not
account for the 100 to 200% increase in the heat transfer observed by Johnson, et al. (1994).

The stationary results show very strong secondary flow being generated by the trips in
the absence of rotation. The trips generate a two-vortex structure, for which the circulation
direction is dependent on flow direction and trip orientation. In the first straight passage of
Passage 1, the flow direction and trip orientation give rise to a double vortex, with upward
velocity of 0.60 Uy in the center and downward velocity of -0.95 Uy (obtained at 0.09 D from
the walls) near the leading and trailing walls. The two-vortex structure induced by the trips is
similar to the Coriolis-induced two-vortex structure observed in Tse, et al. (1994). The
relative tangential velocity measurements in Tse, et al. (1994) show that near-wall secondary
flow of the order of 0.1 Uy (obtained at 0.1 D from the walls) is present near the upper and
lower walls. The incompressible flow simulations in Tse, et al. (1994) and McGrath and Tse
(1995) show that near-wall secondary flow is of the order of 0.3 U, (leading to a 24%
increase in heat transfer) at a location closer than 0.1 D from the walls. The effect of near-
wall secondary flow of the order of 0.95 U, on heat transfer can be potentially large.

The stationary measurements further show that, for a passage with trips, the
development of streamwise flow in the first two passages is very significant, as a consequence
of the strong secondary flow. The trips generate two high velocity regions (both reaching
1.50 Uy) close to the leading and trailing walls. The velocity measurements of Tse, et al.
(1994) show that, for the model with smooth walls, the high velocity region (1.2 Us) is close
to the center of the passage and the velocity at the boundary layer near the walls is below

0.8 U,. Based upon the Nu-Re®® relationship, the change in flow characteristics leads to a
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66% increase in heat transfer. Therefore, most of the increase in heat transfer (100 to 200%),
observed by Johnson, et al. (1994) with skewed trips, is attributed to the changes in flow
characteristics and to the strong secondary flow induced by the two-vortex structure.

3.3.2 Rotating ribbed-wall heat transfer in relation to reference heat transfer

Johnson, et al. (1994) show that with skewed trips there are no significant differences
in the heat transfer characteristics between stationary and rotating measurements after the first
few hydraulic diameters in the second passage. The analysis in this section will focus on the
first passage. The increase in heat transfer from the high pressure surface in the first passage
and in the first few hydraulic diameters in the second passage reach 300 and 266%. The
corresponding increase in the first turn is of the order of 100%.

Coriolis effects increase the streamwise velocity on the high pressure side of the first
passage by 0.6 U,, Figure 3.14.1. Based upon the Nu-Re®? correlation, the increase in
convective heat transfer is of the order of 48 %. The results of Johnson, et al. (1994) show
that the buoyancy increases heat transfer on the trailing side of first passage by 25%. The
combined effect of the increase in streamwise velocity and buoyancy is less than 75%. Swirl
and the re-attachment of cross-flow in the inter-ribbed region account for over 200% of the
300% increase in heat transfer observed by Johnson, et al. (1994).

Johnson, et al. (1994) show an increase in heat transfer of 100% in the first turn. The
overall swirl level at the first turn is higher than that in the first passage, Figures 3.14.2,
3.15.2, 3.162 and 3.17.2. The increase in swirl level at the turn stems from increases in
velocities near the eye of the vortex. The swirl levels close to the wall are of similar
magnitude in the turn and the passage. The increase in turbulence intensity at the tumn
contributes to the increase of 100%, Tse, et al. (1994). The increase in heat transfer
aswdated with swirl in the first passage is expected to be less than 100%.

Johnson, et al. (1994) showed increases in heat transfer of up to 300% from the
pressure surface of the first passage. The above discussion shows that the increase in heat
transfer associated with increase in streamwise velocity (~48%), swirl (<100%) and buoyancy
(~25%) is of the order of 175%. Thus, it appears that re-attachment of cross-flow in the

inter-ribbed region increases the heat transfer by over 125%.
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3.3.3 Rotating ribbed-wall in relation to stationary ribbed-wall measurements

Johnson, et al. (1994) show that, in the first passage, rotation increases the heat
transfer from the trailing (high pressure) surface by 25 to 30%. The heat transfer from the
leading (low pressure) surface of the first passage decreases by 50%. In the second passage,
rotation increases the heat transfer from the leading (high pressure) surface by 5 to 11.5%.
The decrease in heat transfer from the trailing (low pressure) surface of the second passage is
close to zero.

Figure 3.3.1 shows that, in the first passage, the trips generate two high velocity
regions close to the walls (both reaching 1.50 Us) in the absence of rotation. Figures 3.14.1,
3.15.1 and 3.16.1 show that, with rotation, the maximum streamwise velocity on the trailing
(high pressure) side reaches 1.60 Us. Based upon the Nu-Re® correlation, this leads to a 5%
increases in convective heat transfer. Johnson, et al. (1994) show that rotation increases the
heat transfer from the trailing surface by 30%. Their results further show that buoyancy
increases the heat transfer from the trailing surface by 25%. Re-attachment of cross-flow in
the inter-ribbed region increases the heat transfer from the trailing (high pressure) side by the
same magnitude in both stationary and rotating cases. The two-vortex structure of Figure
3.14.2 and the swirl and corner recirculation structure of Figure 3.2.2 induce the same degree
of heat transfer from the surface.

Figures 3.3.1 and 3.14.1 show that rotation induces a large velocity deficit on the
leading (low pressure) side. With rotation, the streamwise velocity at the location
corresponding to high velocity (1.5 Us) under stationary conditions is of the order of 0.9 U,.
Based upon the Nu-Re”® correlation, this leads to a 50% decrease in convective heat transfer.
The results of Johnson, et al. (1994) show that rotation decreases the heat transfer from the
leading surface of the first passage by 50%. Their results further show that buoyancy
increases the heat transfer from the leading surface by 20 %. With rotation, the influence of
re-attachment of the cross-flow in the inter-ribbed region on the leading (low pressure)
surface is reduced by 20 %. This is expected because rotation increases the separation of the
cross-flow in the inter-ribbed region on the low pressure surface. The heat transfer from the
surface induced by the swirl and corner recirculation structure of Figure 3.14.2 is 20% less

than that induced by the two-vortex structure of Figure 3.2.2.
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Figures 3.23.1 and 3.24.1 show that, in the second passage, rotation increases the
streamwise velocity on the leading (high pressure) side from 1.50 U, to 1.55 U,. Based upon
the Nu-Re™® correlation, this leads to a 2.5 % increase in convective heat transfer. The results
of Johnson et al. (1994) show that rotation increases the heat transfer from the leading (high
pressure) surface by 5 to 11.5%. Since Johnson, et al. (1994) do not assess the effect of
buoyancy in this region, the individual effect of buoyancy and re-attachment of cross-flow in
the inter-ribbed region is unknown. These effects account for the difference between the heat
transfer characteristics observed in Johnson, et al. (1994) and those estimated from the
Nu-Re** correlation.

Figures 3.23.1 and 3.24.1 show that, in the second passage, rotation decreases
streamwise velocity on the trailing (low pressure) side from 1.50 U, to 1.0 Uy. Based upon
the Nu-Re®® correlation, this leads to a 40% decrease in convective heat transfer. Johnson, et
al. (1994) show that rotation does not affect the overall heat transfer from the trailing (low
pressure) surface. Their results further show that buoyancy increases the heat transfer from
the trailing (low pressure) surface by 60 %. Similar to the situation in the first passage,
rotation reduces the influence of re-attachment of cross-flow in the inter-ribbed region on the
leading (low pressure) side in the second passage by 20%. The heat transfer from the surface
induced swirl and corner recirculation structure of Figure 3.22.2 is 20% less than that induced
by the two-vortex structure of Figure 3.2.2.

The relative increase in heat transfer between the ribbed wall passages and the smooth
wall passage (100 to 200%) is much greater than the relative increases and decreases in heat
transfer between stationary and rotating ribbed wall passages. Thus, the skewed trips have a
much stronger influence on heat transfer than rotation. In the first passage, the reduction in
heat transfer from the low pressure wall is greater than the increase from the high pressure
wall. Rotation leads to an overall decrease in heat transfer. The reduction in heat transfer

stems mainly from the large velocity deficit on the low pressure side.
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4. RESULTS AND DISCUSSION - PASSAGE 2.
4.1 Stationary measurement

Figures 4.1 to 4.3 show the velocities in the first passage. At x/D =1, Figure 4.1.1,
the high velocity region is close to the lower wall. This is consistent with the flow exiting an
S-bend. The maximum streamwise velocity reaches 0.65 Uy, 30% higher than Uy, U is 0.5 Us
because of the expansion in flow area. The vertical velocities, Figure 4.1.2, indicate that the
S-bend directs the center flow downward and the near-wall flow upward. The maximum
positive and negative velocities reach values of +0.15 Us, 0.3 U,. The results in Section 3.1
show that the streamwise flow non-uniformity and vertical velocity in Passage 1 are of the
order of 0.1 U,. The increase in streamwise flow non-uniformity and vertical velocity in
Passage 2 is attributed to the increase in flow area. The flow is more sensitive to secondary
flow as a result of the reduced momentum.

At x/D = 7, Figure 4.2.1, the high velocity region remains close to the lower wall and
the maximum velocity has increased to 0.80 U, within 6 D. There is a convection from the
upper to lower wall between x/D=1 and 7. This is attributed to the two-vortex structure,
Figure 4.2.2. These vortices have upward velocity reaching 0.95 Uy near the side walls and
downward velocity of around 0.6 U, in the center. Figures 4.2.2 and 3.2.2 show that the
strength of the vortices at x/D =7 are almost equal for Passages 1 and 2. However, the
vortices in Passage 2 circulate in the opposite direction. The circulation of the vortices
generated by the trips is dependent on trip orientation.

At x/D = 12, Figure 4.3.1, the maximum velocity remains at 0.8 U, and is located
close to the lower wall. The streamwise flow development between x/D=7 and 12 is
reduced. This is consistent with a substantial reduction in the strength of the vortices, Figure
43.2. Flow entering a turn usually peaks on the convex side. Figure 4.3.1 shows that the
flow entering the turn peaks on the concave side. This is attributed to convection associated
with the two-vortex structure induced by the outward flow and the trips skewed at +45°.

Figure 4.4 shows the velocities in the first turn. Figure 4.4.1 shows that, similar to
Passage 1, the high velocity region is close to the convex (suction) side of the turn. It
achieves a maximum value of 0.8 Uy. The flow in the first turn exhibits inviscid behavior for

Passages 1 and 2. The division of the cross-flow into two separate streams at the first turn
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observed in Passage 1, Section 3, is also evident in Passage 2. The stream that is close to the
lower wall is more noticeable in Passage 2 because the combination of outward flow and trips
skewed at +45° induces a high velocity region close to that wall. The bifurcation on this
stream into two streams on impact with the concave wall and its subsequent entry into the
second passage along the side walls can be seen in the bifurcation of the high velocity region,
Figure 4.4.1. The stream that propagates to the second passage by sweeping along the
concave side is evident in the increase in streamwise velocity near the concave wall. The
signatures of these two streams are evident in the positive and negative cross-stream velocities
of Figure 4.4.2.

Figures 4.5 and 4.6 show the velocities in the second passage. At 1 D downstream of
the first turn, Figure 4.5.1, streamwise recirculation with negative velocity of -0.25 U, (50%
of U,) occurs near the lower wall. The sharp turning of the cross-flow induces streamwise
recirculation which extends to 0.3 H. As expected, the high velocity region at the exit of the
first turn is on the concave (pressure) side. The high velocity region increases in size and its
maximum velocity increases from 0.8 U,, Figure 4.3.1, to 1.0 U,, Figure 4.5.1; indicating
further convection from the suction to the pressure side of the turn. The vertical velocity
contours, Figure 4.5.2, show maximum upward velocity of 0.25 U, in the center and
maximum downward velocity of 0.6 U, near the side walls. The circulation direction of the
two-vortex structure is opposite to that in the first passage. The circulation of the vortices
generated by the trips is dependent on flow direction.

At 1 D upstream of the third turn, Figure 4.6.1, the high velocity is close to the lower
wall. The redistribution of the high velocity from the upper to the lower wall in the third
pasasge is consistent with the circulation direction of the two-vortex structure, Figure 4.6.2.
Figures 4.6.1 and 4.3.1 show that the streamwise velocity characteristics at the end of the first
and second passages are inverted. This inversion is due to the change in circulation direction
of the two-vortex structure associated with change in flow direction. In contrast to Passage
1, Figures 3.6.1 and 3.3.1, the streamwise velocity characteristics at the end of the first and
second passages are the same. Reversing the trip orientation or the flow direction reverses the

circulation of the vortices. However, reversing the trip orientation and the flow direction do
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not alter the circulation of the vortices (see Figures 2.1 and 2.2 for trip orientation and flow
direction).

At 1D downstream of the second turn, Figure 4.7.1, the maximum streamwise
velocity increases to 1.65 U, (from 0.8 U, at 1 D upstream of the second turn) as a result of
further convection from the suction to the pressure side and the reduction of flow area.
Separation does not occur at the exit of the second turn for Passage 2 because of the
contraction. Figures 4.7.1 and 4.6.1 show that the high velocity region enters the second turn
on the convex (suction) side and exits it on the concave (pressure) side. This is expected
because flow entering a turn peaks on the convex side and flow exiting a turn peaks on the
concave side. The vertical velocity contours, Figure 4.7.2, show the expected two-vortex
structure. The negative velocities are close to the side walls and reach a maximum value of -
0.80 Us. The positive velocities are in the center and reach a maximum value of 0.60 U,. The
vortices circulate in the same direction as those in the second passage (both trip orientation
and flow direction are reversed) but opposite to those in the first passage (only trip orientation
is reversed).

The velocity characteristics at locations B9, B11 and BI2 are similar to those at
locations A3, AS and A6. This is expected because both trip orientation and flow direction
are reversed. The resulting two-vortex structures which determine the flow characteristics in

the passage are the same for both Passages 1 and 2.

4.2 Rotating measurement

Figures 4.11 to 4.15 show the velocities of the first passage. At x’D=1 and 4,
Figures 4.11.1 and 4.12.1 show the maximum streamwise velocity reaches 0.85U, (70%
above U,). The high velocity region occurs on the leading side of the passage near the upper
wall. Stationary measurements, Figure 4.1.1, indicate that the high velocity region is near the
lower wall. The differences between stationary and rotating measurements stems from
rotation induced secondary flow.

At x/D = 1, the tangential velocities within the region y/H = 0.8 are all negative,

Figure 4.11.2. The maximum negative velocity reaches -0.1 U, and occurs near the center of

23



the passage. The results are consistent with the characteristics of a two-vortex structure
induced by rotation. The positive velocities are expected to occur within 0.1 D from the
upper and lower walls.

Figures 4.12.2, 4.13.2, 4.14.2 and 4.15.2 show the tangential and vertical velocity
components at x’D=4, 7, 10 and 12 in vector form. After 4D, the first pasasge is
characterized by counter-clockwise swirl and a comer recirculation. With outward flow and
the trips skewed at +45°, the swirl is located on the leading side of the passage. The comner
recirculation is on the trailing side and it is compressed to the lower half of the passage. In
the absence of rotation the trip strips generated the two-vortex structure shown in Figure
4.123. Figure 4.12.4 shows the two-vortex structure expected from rotation. The
interaction of these two-vortex structures produces the swirl and comner recirculation
characteristics.

At x/D = 7, Figure 4.13.1, the maximum velocity remains at 0.85U,. However, the
high velocities have divided into two regions. The first region remains in the upper half of the
passage, but it has shifted to the trailing surface. This is consistent with the vectors of Figures
4.12.2 and 4.13.2, which indicate tangential convection from the leading to trailing surface
along the upper wall. The second pocket is in the lower half of the passage near the leading
surface. It is induced by convection from the upper half of the trailing wall to the lower haif
of the trailing wall, indicated by the vectors.

At x/D = 10, Figure 4.14.1, the maximum velocity remains at 0.85 U,. The high
velocity region at x/D = 10 is more compressed and is closer to the trailing surface than that at
x/D = 7. This indicates a net tangential convection from leading to trailing surface.

At x/D =12 (1 D upstream of the first turn), Figure 4.15.1, the maximum velocity
reduces to 0.8 U,. The high velocity region remains close to the trailing surface and the
velocity gradient in the tangential direction has been reduced relative to that at x/D =10. This
is attributed to the aerodynamic contraction induced by the turn and is evident in the results
presented below. Acceleration through a contraction reduces asymmetry in the flow.

Figure 4.16 shows the velocities in the first tum. The streamwise velocities, Figure
4.16.1, show that the high velocity region is in the form of a ring. This is attributed to swirl.

Figure 4.16.2 shows the tangential and cross-stream velocity components in vector form.
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Clockwise swirl (viewed from the downstream direction) is present at the turn. The swirl in
the first passage and the first turn are in the same diréction (counter-clockwise) when they are
viewed from the upstream direction. The swirl level at the turn is higher than that in the first
passage. The outward flow on the trailing side is reinforced by the centrifugal force. The
momentum is transferred to the inward flow on the leading side by convection.

The swirl at the first turn is much stronger than that in Tse, et al. (1994) and McGrath
and Tse (1995) in a turn with a square cross-section. This is partly attributed to the difference
between the aspect ratio of the turn and partly to the presence of swirl before the turn. The
tangential velocities in the present and the previous investigations are of similar magnitudes.
The maximum cross-stream velocities (1.7 Uy) is 260% higher in the present case because of a
100% increase in the aspect ratio of the turn. In the present case, swirl already exists in the
first passage, but in Tse, et al. (1994) and McGrath and Tse (1995) the flow is characterized
by the two-vortex structure induced by the Coriolis effect. The velocity vector in y/H = -0.8
of Figure 4.16.2 shows that, for a turn with a radius of 3.05 mm, some flow proceeds to the
second passage along the leading side of the tumn. Tse, et al. (1994) and McGrath and Tse
(1995) show that, for a turn with a radius of 15 mm, the flow on the leading side of the turn is
convected back to the trailing side along the convex wall.

The corner recirculation zone in the first passage, Figures 4.14.2, 4.14.2, 4.15.2, is
compressed to a small region by the expansion of the swirl region, Figure 4.16.2. The strong
inward velocity on the leading side acts as a blockage to the flow discharging from the first
passage. It induces a contraction and forces the cross-flow to proceed to the second passage
along the trailing side. Consequently, the streamwise velocities on the trailing side of the turn
are greater than those on the leading side. This is evident in the contours of Figure 4.16.1.

Figures 4.17 to 4.20 show the velocities in the second passage (inward flow passage).
At 1 D downstream of the first turn, Figure 4.17.1, the maximum streamwise velocity reaches
0.95U, (90% above Up). The high velocity region is located on the trailing side of the
passage. The ring structure observed at the tumn is also evident at 1 D downstream of the
turn. The absence of streamwise recirculation is a striking feature of Figure 4.17.1. The
stationary results, Figure 4.5.1, show a strong recirculation region which extends to 0.35 H in

the lower half of the passage at this location. Inward flow of the order of the bulk mean
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velocity on the leading side of the turn, Figure 4.16.2, fills the velocity deficit and eliminates
the recirculation zone.

Figure 4.17.2 shows the tangential and cross-stream velocity components obtained at
x/D = 18 in vector form. The vertical components can not be obtained at y/H = +0.8 and only
the tangential components are plotted at this location. The secondary flow at 1D
downstream of the first turn is characterized by a clockwise swirl (viewed against the flow).
The maximum absolute tangential and vertical velocities reach 0.35 and 0.55 Us. The swirl is
considerably weakened at the exit. The downward force induced by the turn has prevented
the swirl from reaching the upper wall.

Figures 4.18.1, 4.19.1 and 4.20.1 show the streamwise velocities at x/D = 20, 25.5 and
27.5. The high velocity region in the second passage is close to the leading (pressure) surface
after the 3 D location. This streamwise velocity distribution is consistent with the Coriolis-
induced secondary flow. The maximum velocity is reduced from 0.85 U, at x/D =20 to
0.80 U, at /D = 25.5 and 27.5. The distortions of the high velocity region on the leading side
at x/D = 20 stem from separation and re-attachment of cross-flow associated with the trips.
The stationary measurements, Figures 4.5.1 and 4.6.1, show that the trips induce a vertical
convection from the upper to lower wall. The vertical convection can be seen in the velocity
contours between x/D =20 and 25.5, Figures 4.18.1 and 4.19.1. Comparison of Figures
4.19.1, 4.20.1 and 4.6.1 shows that, with rotation, the contours are distorted in the tangential
direction because of the Coriolis effect. The bifurcation of the high velocity region between
x/D =25.5 and 27.5, Figures 4.19.1 and 4.20.1, stems from the upstream effect of the turn.
The cross-flow is expected to peak on the convex (low pressure) side before entering a turn.

Figure 4.18.2 shows the tangential and vertical velocity components at x/D =20 in
vector form. The vertical components can not be obtained at y/H =+0.8. Only the tangential
components are plotted at this location. In a 1.0” x 0.5” passage with inward flow and trips
skewed at +45°, the secondary flow is characterized by a large clockwise swirl on the leading
side and a comer recirculation on the upper half of the trailing side. In the absence of rotation
the trip strips generate the two-vortex structure shown in Figure 4.18.3. Figure 4.18.4 shows
the two-vortex structure expected from rotation. The interaction of these two-vortex

structures produces the velocity vectors of Figure 4.18.2. The comer recirculation zone is re-
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established within 3 D downstream of the ‘tum. The secondary flow characteristics in a
1.0” x 0.5” passage are consistent with those observed in a 0.5” x 0.5” passage under the
same trip orientation and flow direction, Figure 3.19.2. The aspect ratio of the passage does
not affect the general nature of the secondary flow.

At x/D = 25.5 and 27.5, Figures 4.19.2 and 4.20.2, the tangential velocity contours are
consistent with the clockwise swirl and comner recirculation flow structure described in Figure
4.18.2. The secondary flow in the second passage is characterized by a large clockwise swirl
on the leading side and a corner recirculation on the upper half of the trailing side. The results
of Tse, et al. (1994) show that, in a 0.5 x 0.5” passage with smooth walls, the swirl induced
by the first turn dissipates within 4 D downstream of the turn. Trips skewed at +45° preserve
the swirl in the inward flow passage to the end of the passage.

Figure 4.21 shows the tangential and cross-stream velocity components obtained in the
second turn in vector form. The secondary flow at the turn is characterized by a large
counter-clockwise swirl (viewed against the flow) on the trailing side and a comner
recirculation on the leading side near the concave wall. The swirl in the second passage and
the second turn are in the same direction (clockwise) when they are viewed from the upstream
direction. However, the corner recirculation in the second passage is on the trailing side and
that in the second turn is on the leading side. The corner recirculation in the second passage is
induced by the trips and it collapses at the turn. The inward flow on the leading side of the
second turn is retarded by centrifugal force. This induces a new corner recirculation zone
close to the concave surface of the turn.

The corner recirculation in the second turn is much stronger than that in the first turn.
Centrifugal force directs flow to the concave surface in the first turn and weakens the corner
recirculation. It directs flow away from the concave surface in the second turn and
strengthens the corner recirculation. The level of swirl in the first turn is higher than that in
the second. This partly stems from retardation of the flow on the leading side by centrifugal
force and from the reduction of the Coriolis effect. In the second turn, Coriolis forces are

weaker than those in the first turn because the second turn is located at a smaller radial

distance from the axis of rotation.
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Figures 4.22 and 4.23 show the streamwise velocity contours in the third passage. At
x/D=31.5 and 36.5 (1 and 6 D downstream of the second turn), the high velocity regions
reach 1.55 U, and occur on the trailing side. However, previous results with smooth walls,
(Tse, et al. (1994)) have shown rotation increases the maximum streamwise velocity to
1.2 Up. The results of Tse, et al. (1994) further show that the high velocity region at the exit
of a gradual turn with a large radius of curvature is located close to the upper wall. Figure
4.22 shows that the high velocity region is near the lower wall in the ribbed wall passage.
This is consistent with the flow visualization obtained in the sharp turn of a stationary passage
with a small radius of curvature, Mochizuki, et al. (1994). The present results show that
rotation does not alter the vertical disﬁbution of the flow. The high velocity region is shifted
laterally to the trailing side, because of rotation. The contours of Figure 4.23 are consistent
with those of Figure 3.14.1. The flow characteristics in the third passage of Passage 2 are
similar to those in the first passage of Passage 1. This is expected because the trip orientation

and flow direction are the same for both of these passages.

4.3  Relationship with heat transfer

No heat transfer measurements in the configuration of Passage 2 are available in the
open literature. The velocity measurements presented in the previous subsections will be
analyzed in relation to the heat transfer results reported in Wagner, et al. (1991) and Johnson,
et al. (1994). Details of each configuration are available in the corresponding publication and
the brief summary in Section 3.3. The increase and decrease in heat transfer quoted in
sebsequent discussions are relative to the stationary reference Nusselt number, Nu., used in
both Wagner, et al. (1991) and Johnson, et al. (1994).

Passages 1 and 2 allow a comparison of using trips skewed at -45° and +45° in the
first passage. Skewed trips and rotation induce swirl in the passage and separation and re-
attachment of cross-flow in the inter-ribbed region. Figures 4.13.2, 4.14.2 and 4.15.2 show
that, for trips skewed at +45°, separation occurs at the upper half of the leading side and at
the center of the trailing side. Re-attachment occurs at the lower half of the leading side and

at the upper and lower corner at the trailing side. Figures 3.13.2, 3.14.2 and 3.15.2 show
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that, for trips skewed at -45°, separation occurs at the center of the leading side and the lower
corner of the trailing side. Re-attachment occurs at the upper and lower corner of the leading
side. On the trailing side, re-attachment occurs at the upper comner and the center.

The upper half of the leading surface can be a local hot spot with trips skewed at +45°.
The center of the leading surface can be a local hot spot with trips skewed at -45°. The
streamwise velocities in those regions are low because of the associated secondary flows. In
addition, they are regions with separation of cross-flow, which further inhibits surface heat
transfer.

Figures 4.15.2 and 4.16.2 show that, with trips skewed at +45°, the secondary flow
characteristics remain the same as the flow propagates from the first passage to the first turn.
Figures 3.16.2 and 3.17.2 show that, with trips skewed at -45°, the secondary flow
characteristics in the first passage and the first turn are different. The comer recirculation
zone in the first passage is on the leading side and that in the first turn is on the trailing side.
Changes in the secondary flow structure enhance mixing. Trips skewed at -45° induce more
effective mixing in the vicinity of the first turn than trips skewed at +45°. The heat transfer
results of Johnson, et al. (1994) are obtained with trips skewed at -45°. Their results show
that, on the leading side of the first passage, the heat transfer in the last few hydraulic
diameters is 20% higher than that in the remaining passage. Based upon these results, the use
of trips skewed at -45° in the first passage (outward flow passage) is to be preferred.

Figures 3.16.2, 3.17.2, 4.15.2 and 4.16.2 show that, with trips skewed at +45°, the
secondary flow characteristics in the second passage are different from those at the second
turn. The corner recirculation zone in the second passage is on the trailing side and that in the
second turn is on the leading side. The mixing induced by trips skewed at +45° to the cross-
flow is more effective in the vicinity of the second turn than that induced by trips skewed at -
45°. The use of trips skewed at +45° is to be preferred in the second passage, the inward flow
pasasge.

For Passage 2, Coriolis effects increase the streamwise velocity on the high pressure
side of the first and second passages by 10% of the passage mean velocity, Figures 4.14.1 and

4.19.1. They decrease the streamwise velocity on the low pressure side of the first and second
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passages by 100 %. Based upon the Nu-Re** correlation, the increase in convective heat
transfer from the high pressure surface in the first and second passages is of the order of 8%.
The corresponding decrease in convective heat transfer from the low pressure surface in the
first and second passages is of the order of 70 %. The relative increase in heat transfer from
the high pressure surface associated with convection in Passage 2 is larger than that in
Passage 1 (5%), Section 3.3. However, the relative decrease in heat transfer from the low
pressure surface associated with convection in Passage 2 is larger than that in Passage 1 (40 to
50%). Rotation induced a steeper streamwise velocity gradient in the tangential direction in
Passage 2 than that in Passage 1 because of the reduction in velocity associated with the
increase in flow area. The influence of rotation on heat transfer for rectangular passages with
an aspect ratio of above unity is higher than that for square passages.

Similar to Passage 1, the overall swirl level at the first turn of Passage 2 is higher than
that in the first passage, where the trips are skewed at +45°, Figures 4.13.2, 4.14.2, 4.15.2
and 4.16.2. The increase in swirl level at the turn stems from increases in velocity at the eye
of the vortex for both passages. The swirl levels close to the wall are of similar magnitude in
the turn and the straight passage. Comparison of the results of Passage 1 and Johnson, et al.
(1994), both obtained in 0.5” x 0.5” square passages with trips skewed in the same
orientation, shows that augmentation of heat transfer by the re-attachment of cross-flow in the
inter-ribbed region is greater than that by swirl. Similar results can be expected with
1.6” x 0.5” passages.

The results of Wagner, et al. (1991) show that, in a square passage with smooth walls,
rotation leads to an increase in heat transfer of over 150% in the first tumn but an increase of
15% at the second turn. The discussions in Sections 3.2 and 4.2 show that the level of swirl
in the second turn is lower than that in the first, Figures 3.16.2, 3.21.2, 4.16.2 and 4.21.2. In
addition, the corner recirculation in the second turn is stronger than that in the first. The
present results show that there are differences between the secondary flow characteristics in
the first and second turn. The differences between the heat transfer in the first and second
turns observed by Wagner, et al. (1991) are partly attributed to differences in secondary flow

characteristics.
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Johnson, et al. (1994) show that, in the first turn, the heat transfer in the smooth wall
passage is higher than that in the passage with skewed trips. However, in the second turn, the
heat transfer in the smooth wall passage is lower than that in the passage with skewed trips.
The cross-stream velocities in the first turn are different from those in Tse, et al. (1994) and
McGrath and Tse (1995). The tumn configuration and tuming radius in both cases are
different. However, the results can be analyzed in a qualitative manner. The present results
show that the velocities near the eye of the vortex are higher than those Tse et al. (1994) and
McGrath and Tse (1995). For flow over ribbed walls, the velocity in the center of the channel
can be expected to increase due to momentum losses at each trip. For the smooth wall case,
the velocities near the wall are expected to be higher than that with ribbed walls. The
decrease in heat transfer (relative to the smooth wall case) in the first turn of a ribbed wall
passage is attributed to decreases in velocity near the wall. No data is available from the
investigations of Tse, et al. (1994) and McGrath and Tse (1995) in the second tumn for

comparison.
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NOMENCLATURE - CHAPTER 5

A

-A

corr

f.
pipe
ratio

ratio
corr

air

L
Nu

Nu_.
pipe

Nu

ratio

P
p(X, v, 2)

exit

Wall surface area, ft (mz)

Pressure drop parameter

Temperature increase parameter

Channel hydraulic diameter, in (cm)

Trip strip height, in (cm)

Channel friction factor

Channel friction factor (corrected to 14 trip strip pitches)

Turbulent pipe flow friction factor (smooth pipe)
Fricton factor ratio
Fricton factor ratio (corrected)

Heat transfer coefficient, Bto/(heft’F) W/(mT)
Channel height, spacing between trip strip walls, in (cm)
Y-axis grid plane direction for CFD simulations
Z~axis grid plane direction for CFD simulations
X-axis grid plane direction for CFD simulations

Thermal conductivity of air, Btw/(hrftF) W/(mC)

Turbulent kinetic energy
Channel length, in (cm)
Nusselt number

Turbulent pipe flow Nusselt number (smooth pipe)

Nusselt number ratio

Pressure field
3—d Pressure field

Channel exit plane pressure, psia (N/m?)
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inlet
Pr
Pstatic
AP

pumping

Re

Ro
exit
inlet

pm

St

Stibbed

St

smooth

T

t(x,y, z)
T air inlet
Tbulk

T/c
tds
TDS

Channel inlet plane pressure, psia (N/mz)

Prandtl number

Static pressure, psia (N/mz)

Channel pressure drop, psia (N/m?

Channel pressure increase from rotation pumping, psia (N/mz)
Trip strip pitch, in (cm)

Wall surface heat rate, Btw/hr (W)

Ideal gas constant, ft-Ibf/(lbmR) J/(KmolK)

Reynolds number

Root mean square component of the channel streamwise velocity
Rotation number

Channel exit plane radius (from axis of rotation), in (cm)
Channel inlet plane radius (from axis of rotation), in (cm)

Revolutions per minute

Stanton number

Stanton number on (ribbed) trip strip surface
Stanton number from smooth wall channel simulation

Temperature Field

3-d dimensional temperature field

Channel inlet plane temperatue, R (OC)

Channel bulk (mass averaged) temperature,oR (OC)
Thermocouple

Turbulent energy dissipation

NASTAR non-dimentionalized turbulent energy dissipation
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tke Turbulent kinetic energy
TKE NASTAR non-dimentionalized turbulent kinetic energy
Teim Fluid film tempertature, R ( %Z)
T,,  Channel wall temperatue, R (C)
u Channel x—axis velocity for CFD simulations, ft/sec (m/sec)
U Channel streamwise bulk velocity, ft/sec (m/sec)
Upuik Channel streamwise bulk velocity, ft/sec (m/sec)
uinpav NASTAR reference velocity, ft/sec (m/sec)
v Channel streamwise bulk velocity, ft/sec (m/sec)
v Channel y-axis velocity for CFD simulations, ft/sec (m/sec)
W Channel width, in (cm)
w Channel z-axis velocity for CFD simulations, ft/sec (m/sec)
X Channel x—axis direction
AX Channel length, in (cm)
y Channel y-axis direction
y?t Dimensionless distance to solid surface
z Channel z-axis direction
Greek Character
a Trip strip skew angle, degrees
S Turbulent energy dissipation
® Rotational speed, radians/sec
P Fluid density, Ibm/ft> (kg/m3
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bulk

wall

Subscripts
CFD
SRA

UTRC

Difference between fluid bulk and wall densities, Ibm/fe (kg/m3)

Fluid bulk density, Ibm/ft® (kg/m)
Fluid wall density, Ibm/ft> (kg/m3

Absolute viscosity, lbm/ftsec (kg/msec)

Computational fluid dynamics
Scientific Research Associates

United Technologies Research Center
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5.0 NUMERICAL SIMULATIONS

5.1 OVERVIEW

The objective of this subcontract was to perform benchmark numerical simulations of a
rotating (and stationary) internal cooling channel with skewed trip strips and compare them to
the experimental velocity field data obtained by the contractor, Scientific Research Associates
(SRA) under Task 4 of NAS3-27378. In addition, calculations were run to simulate selected heat
transfer data (acquired by the United Technologies Research Center (UTRC) under Task 30 of
NAS3-26618).

The computational effort under this task was broken down into two phases. In the first
phase, a grid sensitivity study was performed (assuming periodically fully developed flow) on a
cooling channel computational domain limited to the region between two adjacent trip strips.
The use of this limited domain allowed the grid studies to be performed relatively quickly
(compared to full channel simulations). The results from four separate grid—study simulations
are presented evaluating the effects of rotation, grid density, and two near—wall treatments of the
two—equation k—¢ turbulence model (ie., wall functions and a two—layer wall integration model).

In the second phase, based on the results from the grid sensitivity study, four trip strip
channel simulations (all utilizing the same channel geometry and computational grid) are pres-
ented for; '1) a stationary channel with incompressible flow, 2) a stationary channel with com-
pressible flow, 3) a rotating channel with incompressible flow, and 4) a rotating channel with
compressible flow. These four simulations allow for comparison to both the incompressible—
fluid velocity field data of SRA, and the compressible—flow heat transfer data acquired by
UTRC.

5.2 FLOW FIELD INITIALIZATION

One of the major objectives of the numerical simulations was to be able to compare the
four trip strip channel simulations to each other, in addition to the velocity field data of SRA and
the heat transfer data acquired by UTRC. The velocity field measurements at SRA were per-
formed with an incompressible, isothermal, refractive—index—matching (RIM) fluid, whereas
the the UTRC heat transfer experiments were performed using heated air as the working fluid. In

order to model all these effects, it was necessary to develop a set of consistent CFD simulation
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conditions that were close (but not identical) to either the experimental test conditions of SRA or

that of UTRC.

The experimental test rigs used by UTRC and SRA were originally intended to be geo-
metrically identical. However, differences between the rigs were inadvertently created during
the rig construction process (see Section 5.3). It was therefore necessary to select one of the rig
~ geometries over the other, in order to create the CFD simulation geometry. Since the velocity
flow field initialization conditions were coming from the SRA rig and comparisons to the CFD
simulations at exact geometry locations were planned, it was decided to use the SRA rig as the

simulation geometry.

Preliminary discussions between NASA Lewis, SRA, UTRC, and P&W had established
the experimental flow field conditions would be incompressible (for SRA’s RIM fluid) and near
incompressible flow for the UTRC heat transfer experiments. However, previous experimental
heat transfer studies (Hajek et al., 1991, and Johnson et al., 1993), had shown that centrifugal
buoyancy forces (compressible flow density ratio effects) were important factors in rotating
channel internal heat transfer flows. With this in mind, and since the convective heat transfer
effects could not be simulated using the isothermal SRA fluid test conditions, it was decided to

use air as the CFD simulation fluid.

With the choice of the CFD geometry coming from the SRA tests, and the simulation
fluid from the UTRC experiments, it was necessary to selectively match the Reynolds number,
rotation number, and density ratio for the CFD simulation cases. If the Reynolds numbers condi-

tions for the SRA, UTRC and CFD simulations were identical ie., (Resra = Reytrc = Recrp)

then,
<pUDt> - <PUDh> - <PUDh>
Therefore, ( U > = (ﬂ) = (EP_> 2
1 /sra K /UTRC H/crp

Since all three have the same hydraulic diameter. If it is further assumed that the CFD simulation

uses air properties and that only Recrp = Resra then,
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P/

_ _sra( "cm

Uerp = 5“‘(“ >USRA ©)
CFD SRA

The u, v, w, and streamwise rms values from the SRA data sets are given in terms of,

e Goen. Goan ) @

Ubulk ’ bulk ’ bulk ’ Ubulk

If we assume the non—dimensionalized velocity and rms ratios of equation (4) are inde-
pendent of the experimental fluid used, and multiply each by equation (3), the channel inlet plane

local grid point initialization values of u, v, w & rms for the CFD simulation become,

P u u
Ycrp = __ps <uCFD> Usra < 0 ) )
CFD *""sra SRA'
P /k v
Ve = SRA( cm) Ugen ( ) 6)
CFD uSRA USRA
p 28 w
“erp = —SRA< CFD> Usra < ) Q)
cr \Mra Usra
p p' rms
ms o, = p—s-<uCFD> USRA<U > ®
CFD " sRra SRA’

where Ugra = (Upui)sra. Now, if the Rotation numbers for the SRA, UTRC and CFD

sitnulations were identical ie., (Rosra = Roytrc = Rocrp), where H is the spacing between the

B @ @

where,

trip strip walls then,

_ 2nrpm
60
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Assuming for the CFD simulation that only Rocpp = Rogg 4 and solving equation (9) for

Ucgp then,

Ug = (rmeFD>US 10)
pm SRA RA
Finally, using the definition of the density ratio from Hajek et al., 1991,
Ap _ (pbulk - pwa@ _ <Twall - Tbulk) (11)
P pbulk Twatll
Assuming for the CFD simulation that only (Ap/p)crp = (Ap/p)utre then,
<ﬂ> - <Iﬂn_“_Tb1<> (12)
P /crD Tean ~ UTRC

The following table summarizes the dimensional and non—dimensional parameters used

for all the skewed trip strip 3—d channel (and channel segment) flowfield CFD simulations.

Table 5.1 Dimensional & Non-Dimensional CFD Simulation Flow Parameters

SRA UTRC CFD Simulations
qmass  Ibmisec (kg/sec)|  1.0932 (0.4958) |  0.01308 (0.00593) | 0.01259 (0.00571)
rpm  rev/min —617 -600 -555
P ic psia (N/mx10%) —_ 145.18  (1.001) 13342 (0.920)
Tk °R O 53849 (26.0) 50464 (7.19) 504.64 (7.19)
Tean °R (O 538.49 (26.0) | 53298 (22.94) 53298  (22.94)
Tom °R €O 53849 (260) | 51881 (1507 51881  (15.07)
Py shgft (gmd | 17328 (893.0)| 0.02414 (1244) 0.022184 (11.43)
U, frsec (misec) | 11295 (3.443)| 9700  (2.956) 10.1602  (3.097)
Ro 0.2384 0.2699 0.2384
1L Ibm/ftsec (kg/msec) | 0.001044 (0.00155)| 1.203x10°° (1.79x10°%)| 1.203x10°5 (1.79x1075)
Re 25,125.4 26,096.9 25,125.4
—_ 0.0532 0.0532

AP
p
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5.3 EXPERIMENTAL RIG GEOMETRY DIFFERENCES

The experimental test rigs used by UTRC and SRA were originally intended to be geo-
metrically identical. However, differences between the rigs were inadvertently created during
the rig construction process. Figure 5.1 shows the original rig design drawings from UTRC. The
views shown of the leading and trailing sides of the model (for this and the following figures) are
what one would see from the outside of the rig looking through the clear model walls to the inside

surface.

Figure 5.2 shows photographs of the leading and trailing sides of UTRC heat transfer rig
that was constructed. Also shown are the the UTRC wall thermocouple locations 7, 8, 9, & 10.
Figure 5.3 shows photographs of the leading and trailing sides of SRA rig that was constructed,
along with an overlay of the SRA experimental velocity plane locations for the stationary (Al &
A2), and rotating (D1, D2, & D3) test cases that fall within the CFD simulation computational
domain. Figure 5.4 shows the differences between the UTRC and SRA experimental rigs.

5.4 COMPUTATIONAL PROCEDURES

The governing equations of continuity, momentum, and energy were solved using the
Pratt & Whitney Navier—Stokes code, NASTAR (Rhie, 1986). This is a pressure-based implicit
procedure which solves the full Navier-Stokes equations in general coordinates, thus allowing
the use of body-fitted coordinate systems. In Rhie’s approach, the preliminary velocity field is
first obtained from the momentum equations with a preliminary pressure field. Since this pre-
liminary velocity field does not satisfy the continuity equation, pressure correction equations are
solved to establish a new velocity field which does satisfy the continuity equation. The momen-
tum and continuity equations are coupled through this pressure correction procedure. Then, the
energy and turbulent scalar equations are solved in turn. Two near-wall shear—stress treatments
were evaluated (during the grid sensitivity study) in conjunction with the two—equation k—¢ for-
mulation of turbulence. In one case, the governing equations near the wall were solved by em-
ploying generalized wall functions which assume that the boundary layer velocity profile has a
universal “law—of—the—wall” profile (Launder and Spaulding, 1974). In the other case, the two—

layer wall integration method was used in which the governing equations are solved to the wall
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(Dash etal., 1983). Near the wall, the classical Van—Driest mixing length formulation was used.

This region was patched with the two—equation k—€ turbulence model at y* = 30.

In the initial phase of this project, some numerical convergence difficulties were experi-
enced due to the severely skewed grid topology which is natural to the skewed trip strips. The
original version of NASTAR used a three step pressure correction procedure, where the skewed
grid effect on the Poisson-like pressure equation was lagged as a explicit source term. One pres-
sure correction step was devoted to treat this lagging explicit source term. To fix the convergence
problem, the skewed grid effect was solved implicitly so that there was no lagging effect during
the iterations. The pressure correction procedure was thus modified into a two step procedure,
but the skewed grid effect was solved implicitly during each step to determine the local 19-point

finite volume relationship.

5.5 GRID SENSITIVITY STUDY

One of the obstacles to the use of CFD for airfoil internal cooling design (with the current
generation of computer resources) is the large amount of computational grid required in order to
model the entire highly complex 3—dimensional flow path, at a sufficient resolution to obtain a
grid independent solution. However, internal cooling schemes often make use of geometries that
contain streamwise repeating geometric patterns (like trip strips). In an effort to take advantage
this “repeating” geometry, the grid sensitivity study was performed by assuming periodically
fully developed flow on a cooling channel computational domain limited to the region between
two adjacent trip strips (see Figure 5.10). Theuse of this limited domain allowed the grid sensi-

tivity studies to be performed relatively quickly (compared to full channel simulations).

First, a general discussion of the periodically fully developed "conveyor-belt” boundary
condition logic is presented. Next, results are presented from a 2—d channel simulation study
used to evaluate the “conveyor—belt” type boundary condition capabilities of NASTAR. Finally,
four separate (compressible flow) 3—d skewed trip strip grid-study simulations are presented,
evaluating the effects of rotation, grid density, and two near-wall treatments of the two—equation

k—e turbulence model (ie., wall functions and a two-layer wall integration model).

41



5.51 Periodically Fully Developed ”Conveyor-belt” Boundary Conditions

As part of a separately funded P&W effort, NASTAR was modified to allow for periodi-
cally fully developed type inlet and exit plane boundary conditions. The general idea behind this
boundary condition logic is that the flow, temperature, and pressure fields are assumed to be peri-
odic over a streamwise repeating geometric pattern. Boundary condition information at the exit
plane of the computational domain is used to create the inlet plane conditions (as though the
boundary conditions were being passed upstream on a conveyor belt). This approach described

by (Liou and Chen 1995), presents a relationship for the pressure and temperature field as,

P = -Ax + p(x,y,2) (13)

T= Bx + t(X,Y,2) (14

Where the pressure drop parameter A and the temperature increase parameter B are constants.
The term —Ax is related to the global mass flow (or Reynolds number) and represents the general
decrease in pressure in the streamwise direction. For the case of heating, it can be shown that the
term Bx is related to the rate of heat addition (per unit span) to the fluid in one streamwise repeat-
ing geometry pitch. The functions P and T repeat themselves identically from pitch to pitch and
indicate the local departure from linear pressure decay given by —Ax, and linear temperature in-
crease given by Bx.

In the present calculation, the —Ax and Bx terms are iterated on to satisfy the global mass
and heat balances. The exit plane static pressure and static temperature profiles, as functions of
the exit plane coordinates (y, z) are injected back to the inlet plane as boundary conditions with

the corrections to the —Ax and Bx terms respectively.

5.52 2-d Channel ”Conveyor-belt” Boundary Condition Evaluation Study

In order to evaluate the "conveyor-belt” boundary condition capabilities of NASTAR,
(prior to its application for the grid sensitivity study), a simplified 2-dimensional, square trip
strip profile, non-rotating, version of the 0.5 inch (1.27 cm) high trip strip channel geometry was
created (see Figure 5.5). This figure shows two views of the same computational grid. The simu-

lated channel is 3.5 inches (8.89 cm) long by 0.5 inches (1.27 cm) high (H), and has 8 trip strips in
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an alternating pattern on the upper and lower walls. The trip strip pitch (p) is 0.25 inches (0.635
cm), and the square trip height (e) is equal to 0.05 inches (0.127 cm). This yields a value of p/e=

5 and e/h = 0.1. The incompressible flow conditions are presented in the following table.

Table 5.2 2—d Channel (Conveyor-belt BC) Evaluation Study Parameters

=7 _
i =39533x10 slug/ftsec (5.8824x10" kg/msec) ~Re =16,600.

D =0.027429 slugs/fC (14.14 kg/m) T =450R (-10F (2330

air inlet
U, =43078 ft/sec (1.313 m/sec) Toall = 661R (201°F) (93.9C)
These parameters correspond to test condition (402) of UTRC’s contract NAS3-26618
Task 30 (Wagner 1994). For the purposes of this simulation, a dense rectangular grid (1400x99
with 30 grids over the trip height) was used. No attempt was made to control y* values evenly
along the wall and trip surface. The purpose here, was to define a ”fully developed” flow field
solution for a fixed grid, that could be used to compare results generated from a separate “con-
veyor—belt” boundary condition simulation of a local section of the same trip strip geometry.
Figure 5.6a shows the streamwise component velocity contours generated by NASTAR
for this 2—d grid. Figure 5.6b shows the same contours with the height of the channel expanded in

order to show the details of the flow field near the trip strip surfaces.

Figure 5.7 shows the 2—d channel velocity contours near trip strips 5, 6, and 7, compared
to those resulting from the “conveyor-belt” logic applied to a single trip strip pitch segment of
the same geometry. Results from both a 2—d segment (and a center spanwise slice of a 3—d seg-
ment) are shown. Excellent agreement in the near wall velocity contours patterns is seen be-
tween these three cases. The differences in the channel midspan contours are attributed to differ-
ent iteration counts (and therefore slightly different global mass balances) between the runs,
which were not held strictly constant for these proof—of—concept simulations.

Figure 5.8 shows a comparison of the static pressure contours. The absolute level of the
static reference pressure was set differently for the 2—d channel simulation (set at the channel
exit), and the conveyor—belt simulations (set at the segment inlet). However, the contour pat-

terns and relative high to low contour pressure delta’s are very consistent. A small discontinuity
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observed in the 2—d “conveyor-belt” simulation velocity and pressure contours (at an internal
streamwise parallel-process break—up plane), was eliminated in the 3—d simulation. Figure 5.9
shows a similar comparison of the static temperature contours. Once again, excellent agreement

in the temperature contour patterns is seen between these cases.

5.53 3-d Skewed Trip Strip Grid Sensitivity Study

Based on the successful results obtained from the 2—d channel evaluation study, efforts
were then shifted to the application of the NASTAR “conveyor-belt” logic for the grid sensitiv-
ity study. Four separate 3—d skewed trip strip (compressible flow) grid—study simulations are
presented evaluating the effects of rotation, grid density, and two near—wall treatments of the

two—equation k—€ turbulence model (ie., wall functions and a two—layer wall integration model).

Figure 5.10 shows a plan view of one side of the 4-leg test rig geometry, and a 3-d
orientation view of the (single trip strip pitch) channel segment grid for the conveyor-belt simu-
lation. The grid segment shown has i, j, k, dimensions of 66x39x39. Also shown is a detail view
of the grid geometry near the trip strip (as seen from inside the channel segment). A number of
different grid density schemes were considered for the conveyor-belt segment domain based on
an initial review of two previous internal cooling channel heat transfer studies.

In the first study (by Tse et al., 1994) a smooth square channel geometry (with no trip
strips) was simulated using a two—equation k—€ turbulence model with wall integration and a jxk
grid dimension of 59x59. The distance between the wall and the first grid point off the wall was
0.0002 inch which corresponded to a y* of approximately 0.5. In the second study, (Stephens et
al., 1995) used alow Reynolds number k— turbulence model formulation for a skewed trip strip
channel geometry; p/e =5, e/H=0.1, /W = 1.0, o = 45 degrees, (identical to the current study)
containing an alternating pattern of 5 skewed trip strips on the top and bottom channel walls.
That simulation had a jxk grid dimension of 65x65 and y* values at the wall of less than 1.0.

The grid densities that were indicated by the two studies above, had to be weighed against
the need in the current contract effort, to be able to compare to as many SRA velocity field data
planes (downstream of the channel inlet) as was feasible for the four subsequent channel simula-
tions (see discussion in Section 5.6). It was decided that a practical upper limit for the i, j, k,

conveyor-belt segment domain (that could be duplicated for the 15 trip strip channel simulation
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geometries) was 66x39x39. A denser conveyor-belt grid domain of 92x49x49 was also selected

for evaluation as part of the grid sensitivity study.

Figure 5.11 shows secondary flow velocity field results (looking downstream along the
positive y—axis at i-plane = 1) for the four separate (compressible flow) conveyor-belt simula-
tions. The dimensional and non—dimensional flow parameters for these CFD simulations were
previously presented in Table 5.1. View (a) shows the results obtained from a stationary channel
segment using wall integration and a grid density of 92x49x49. Two clearly defined major vor-
tices are observed. The upper vortex rotates in the counter—clockwise direction, whereas the
Jlower vortex rotates clockwise. These vortices are created by the alternating skewed trip strip
pattern on the channel segment’s upper and lower wall surfaces. View (b) shows the effect of
rotation. The upper vortex is moved down and the the left and the lower vortex is moved both
down and to the right. The displacement of the vortices is a consequence of the addition of the

Coriolis forces acting on the flow field that were induced by rotation.

Figure 5.11 view (c) shows the same simulation conditions as view (b) except that the
channel segment grid density has been reduced to 66x39x39. The secondary flow patterns are
very similar to that shown view (b), with the vortex relative position and size being nearly identi-
cal. View (d) shows the effect of using wall functions compared to wall integration (in view (¢))
for a the same rotating flow conditions and a similar 67x31x31 size grid. The relative placement,
size, and strength of the vortices is completely different for the wall function case. In addition,

the secondary flow vortices are rotating in the opposite directions.

The y* values on the upper and lower surfaces of the wall function simulation view (d),
ranged mostly between 30 and 60, with some small localized regions going as low as 10. The y*
values for the wall integration case view (c), were almost all less than one except for a extremely
small region on the top of one side of the trip strip (where the values increased to 1.5). Based on
these results, and those that are presented in Section 5.65 (showing good agreement between
view (c) and the rotating compressible flow channel simulations), the following conclusions

were reached.

It appears that the use of wall functions for this trip strip geometry produces entirely un—

reliable secondary flow velocity field results, and it was recommended that they not be used for
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the full channel simulations. The wall integration grid 66x39x39 of Figure 5.11 view (c) ap-
peared to produce results very similar to that of view (b). Although the grids of both views (c &
b) were less dense than that recommended by (Tse et al., 1994 and Stephens et al., 1995), it was
felt that for practical considerations that the upper limit for jxk that could be duplicated (and run

in a reasonable time frame) for the four 15 trip strip channel simulation geometries was 39x39.

5.6 SKEWED TRIP STRIP CHANNEL SIMULATIONS

Based on the results from the grid sensitivity study presented in the previous section, four
skewed trip strip channel CFD simulations (all utilizing the same channel geometry and com-
putational grid) are presented for: 1) a stationary channel with incompressible flow, 2) a station-
ary channel with compressible flow, 3) a rotating channel with incompressible flow, and 4) a
rotating channel with compressible flow. These four simulations are then compared to both the
incompressible—fluid velocity field data of SRA, and the available compressible—flow heat
transfer data acquired by UTRC.

5.61 Channel Geometry and Data Comparison Format

Figure 5.12 shows a 3—dimensional outline view of the skewed trip strip channel geome-
try. This view shows the locations of the SRA stationary (A1 & A2), and rotating (D1, D2, & D3)
velocity field data planes (shown previously in Figure 5.3). Note that locations A1 & D1 are at
the same relative channel location (as are A2 & D3). It also shows the (relative) wall-thermo-
couple locations T/c 7, 8,9, & 10 from the UTRC test geometry. The thermocouple locations are
relative to the channel trip strips that they are nearest to in the figure. The actual locations of the
thermocouples (shown previously in Figure 5.2) could not be depicted in Figure 5.12 due to the
differences in the SRA and UTRC test rig geometries. In addition, Figure 5.12 shows that the
simulation geometry contains 15 trip strips on the lower (or rotating leading) side surface, and 14
trip strips on the upper (or rotating trailing) side surface. The location of i—plane 760 is also
shown (and will be discussed in connection with Figure 5.27 later).

Figure 5.13 shows a 3—dimensional view of the skewed trip strip channel geometry grid.
The channel has a i, j, k, grid domain of 1123x39x39 for a total of 1,708,083 grid points. The
channel height (H) is 0.5 inches (1.27 cm), the channel width (W) is 0.5 inches (1.27 cm), the
channel length (L) is 4.79 inches (12.17cm), the trip strip pitch (p) is 0.25 inches (0.635 cm), and
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the trip strip height (¢) is 0.05 inches (0.127 cm). This yields a value of p/e =5,e/h=0.1, /W =
1.0 and a trip strip skew angle (¢ ) equal to 45 degrees. In Figure 5.13, only every 4th i—plane is
shown (presenting all the i-planes would make the geometry grid look almost black at this scale).

Figure 5.14 shows a view of the computational grid looking along the streamwise (posi-
tive y—axis) direction at (a) the channel “inlet” locations (A1 & D1), and (b) at the downstream
data comparison plane locations (A2, D2, and D3). These views represents the readers orienta-
tion in Figures 5.15 thru 5.25 where the channel simulations will be compared to the SRA veloc-
ity field data. Note, view (b) is an interpolated “slice” of the channel grid at a constant y—axis
location, and has had selected i and k—plane grid locations removed for the sake of clarty.

Each of the four 1,708,083 grid point channel simulations was broken into 18 separate
calculation domains, and run simultaneously (for a total of 72 workstation slaves) on a Sparc—20
workstation parallel-process network at P&W. The calculations were run off-shift at night and
on weekends for a total of 15 calender days to an average of 9,200 iterations. The relatively high
iteration count was used to ensure the flow and thermal fields were converged for these bench-
mark simulations.

The dimensional and non—dimensional flow parameters for all four channel CFD simula-
tions were previously presented in Table 5.1. It should be re—iterated here that it was necessary to
develop a set of consistent CFD simulation conditions that were close (but not identical) to either
the experimental test conditions of SRA or that of UTRC (see the discussion in Section 5.2). All
the non-dimensional velocity field data sets provided by SRA,

I ) FOL ) a5

Ubulk > ) bulk bulk

Where (Upuik)ska = Usra, were multiplied by the constant value of,

P M

— SRA CFD -

Uerp = 5._<_u__> Ugy = 089953 Ugy, (16)
CFD SRA

in order to obtain the local velocity field values of ucrp, ver, and wepp. Therefore the magnitude

of the SRA data sets shown in this section will be ~10% smaller than that presented in the other

sections of this final report.
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The reference velocity used in the NASTAR non—dimensionalization process (uinpav)
was required to be set to 10U csp (in order to maintain the accuracy of the other NASTAR non—di-
mensional terms). Since the SRA reference velocity Usg 4 and the NASTAR reference velocity
10Ucp were not consistent, it was decided to present all the velocity field results as a consistent
set of dimensional (ft/sec) values. This was done in order to avoid both the time and complexity
required in post processing all the information into a2 common non—dimensional form (as an
additional step following the completion of the channel calculation effort).

The non—dimensional rms data set values provided by SRA in equation (4), are presented
as NASTAR non—dimensionalized values of turbulent kinetic energy (TKE) and turbulent dis-
sipation (TDS) by using the following equations,

P ,n 2
tke = 1.5( _SRA(__CFD ) U 1ms a7n
Popp \ B SRAN U
CFD " sra SRA
15
s = 0.09 tke (18)
0.03D,
tk
TKE = ——, (19)
uinpav
12.0 tds
TDS = (20)
uinpav 3
Where,

vinpav = 100U

Dh = channel hydraulic diameter

5.62 (Stationary Channel) Simulations Compared to SRA Data

Figures 5.15 thru 5.18 present the CFD calculated (incompressible and compressible)
flow field values of u, v, w, (in the X, y, z directions) and NASTAR non—dimensional TKE &
TDS, compared to the SRA stationary channel data at locations A1 & A2. Figure 5.15 shows the

three components of velocity (u, v, w), the secondary flow velocity vector field, and TKE & TDS
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at location A 1. The SRA data sets and the CFD simulations are identical at this location, since the

data (interpolated to the CFD grid) was used as the simulation inlet plane boundary conditions.

Figure 5.16 shows a comparison of the secondary flow velocity vector fields and the u—
component of velocity at location A2. The SRA velocity vector field shows two clearly defined
major vortices. The upper vortex rotates in the counter—clockwise direction, whereas the lower
vortex rotates clockwise. These vortices are created by the alternating skewed trip strip pattern
on the channel segment’s upper and lower wall surfaces. The calculated incompressible (and
nearly identical) compressible velocity vector fields also show the same two major vortices. The
direction of vortices’ rotation is the same as the data. However, the center of the upper vortex has
been shifted to the left and upwards, and the lower vortex has been shifted to the left and down-
wards. The motion along the channel walls is similar, however the calculations show higher val-

ues at the wall surfaces in many locations.

This difference at the walls, could be in part due to the sparse nature of the SRA data sets
(near the walls). In order to interpolate the SRA data to the much denser CFD grid, values of the
SRA velocity components had to be linearly interpolated between the closest data plane and the
wall (where the value was set to zero). Unfortunately, this also appears to be a location where
there is a high gradient in the calculated flow field. These differences are probably un—avoidable
in the near wall region (for the calculations presented in this report) and reflect the need (in future

efforts) for more data in the near-wall region.

It should be noted that the “wavey” nature of the calculated velocity vectors fields (is in
part) due to the grid structure at the interpolated grid ’slice” location (see Figure 5.14b). One has
to be careful to separate out this “wavey” grid effect from the size and direction of the vectors
when interpreting the results. In hindsight, it would probably have been better not to let the trip
strip surface shape propagate beyond the channel midplane location during the grid generation
process.

Figure 5.16 also shows acomparison of the u~component of velocity at location A2 (that
along with w—component, makes the velocity vector plots that were just described). The u—com-
ponents are all plotted to the same velocity scale, and show very similar patterns. The data shows

aregion of high +u velocity justleft of the center of the channel. For the calculations, this value is
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reduced slightly and shifted to the left. The —u velocities are more pronounced for the calcula-
tions in the near wall region. However, the overall agreement between data and the calculations
is very good.

The incompressible and compressible calculated velocity component results are virtual-
ly identical for this (and the other following stationary channel comparisons). This result (of the
calculations being independent of the density variation) is expected for non-rotating flows dom-
inated by forced convection (see Hajek et al., 1991). Therefore, for the stationary channel com-

parisons, no further comment will be made between the two calculated results.

Figure 5.17 shows a comparison of the v—component and w—component velocities at
location A2. The SRA data shows a region of high v velocity along the right hand side of the
channel. This is consistent with the two counter—rotating secondary flow vortices (described in
Figure 5.16) forcing the streamwise flow to the right and piling it up along the right hand side
wall. The calculations also show this effect, at a slight lower level of velocity. The overall veloc-
ity levels are quite comparable, however the horseshoe (on its side) pattern of the v—component
data is more pronounced than the calculated results. The w—component of velocities agree quite
well in the location of high and low velocity regions. However, the gradients are more pro-
nounced in the data than in the calculations.

Figure 5.18 shows a comparison of the TKE and TDS values at location A2. The SRA
data shows high values of TKE and TDS along the trips strip wall surfaces with medium to low
regions spanning across the channel mid—section. The simulations also show high regions near
the trip strip surfaces with low values dominating the mid—channel core area. In general, the

simulations appear to underpredict TKE and TDS in the channel mid—section core area.

5.63 (Rotating Channel) Simulations Compared to SRA Data

Figures 5.19 thru 5.25 present the CFD calculated (incompressible and compressible)
flow field values of u, v, w, (in the X, y, z directions) and NASTAR non—dimensional TKE &
TDS, compared to the SRA rotating channel data at locations D1, D2 & D3. Figure 5.19 shows
two (v & w) of the three components of velocity, (the w—component of) the secondary flow ve-
locity vector field, and TKE & TDS at location D1. The SRA data sets and the CFD simulations

are identical at this location, since the data (interpolated to the CFD grid) was used as the simula-
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tion inlet plane boundary conditions. Unfortunately, SRA was not able to experimentally ac-
quire the u—component of velocity at this data plane. Therefore, the inlet boundary conditions

reflect arbitrarily setting the u—component equal to zero everywhere at location D1.

Figure 5.20 shows a comparison of the secondary flow velocity vector fields and the u—
component of velocity at location D2. Unfortunately, the SRA velocity vector field reflects only
w—component (SRA was not able to experimentally acquire the u—component of velocity). The
calculated incompressible (and nearly identical) compressible velocity vector fields show three
major vortices. A large counter—clockwise rotating vortex dominates the channel mid-section
region. Beneath this vortex are two smaller clockwise—rotating vortices that fall in the near wall

region between the trip strips.

Figure 5.20 also shows a comparison of the u—component of velocity atlocation D2. The
calculations show a region of high +u velocity in the lower left hand side of the channel, with
high values of —u along the trip strip wall regions. There are only very minor differences ob-

served between the incompressible and compressible flow simulations.

Figure 5.21 shows a comparison of the v—component and w—component velocities at
location D2. The SRA data shows a region of high v—component velocity extending along the
upper and right hand sides of the channel (and reaching a maximum value along the lower right
side). This is consistent with a large counter—clockwise rotating secondary flow vortex forcing
the streamwise flow to the right and piling it up along the upper and right hand side walls. The
calculations also show these effects, with the compressible flow simulation reaching slightly
higher levels. The w—component of velocities agree quite well in the location of high and low
velocity regions, except along the upper right side wall. The calculations indicate a region of

high +w that is not observed in the data.

Figure 5.22 shows a comparison of the TKE and TDS values at location D2. The SRA
data shows high values of TKE and TDS along the trips strip wall surfaces with a medium level
region spanning along the left hand side of the channel. The simulations also show high regions
near the trip strip surfaces, low values dominating the mid—channel core area, and sightly ele-
vated values along the left hand side wall. In general, the simulations appear to underpredict

TKE and TDS in the channel mid—-section core area.
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Figure 5.23 shows a comparison of the secondary flow velocity vector fields and the u—
component of velocity at location D3. The SRA velocity vector field data shows two clearly
defined major vortices. The large upper vortex rotates in the counter—clockwise direction,
whereas the smaller vortex rotates clockwise in the lower wall region between the middle and
right hand side trip strips. These vortices are created by the alternating skewed trip strip pattern
on the channel segment’s upper and lower wall surfaces, interacting with the Coriolis forces that
were induced by rotation. The calculated incompressible (and nearly identical) compressible
velocity vector fields also show the same two major vortices, plus an third clockwise rotating
vortex located in the lower channel region between the left side and middle trip strips. The direc-
tion of the first two vortices’ rotation is the same as the data. However, the center of the upper
vortex has been shifted to the left and upwards, and the second vortex has been shifted to the left
and downwards. The motion along the channel walls is similar, however the calculations show
higher values at the wall surfaces in many locations (see the previous discussion of Figure 5.16
about the problems in interpolating the SRA data between the wall and the nearest channel data

plane).

Figure 5.23 also shows a comparison of the u—~component of velocity at locaticii D3. The
data shows a region of high +u velocity in the lower left hand region of the channel. For the
calculations, this value is reduced slightly. The —u velocities are more pronounced for the cal-
culations in the trip strip wall regions. However, the overall agreement between data and the
calculations is very good. It is also interesting to note that the calculated u—component values

(and secondary flow velocity vector fields) at locations D2 and D3 are almost identical.

Figure 5.24 shows a comparison of the v—component and w—component velocities at
location D3. The SRA data shows a region of high v—component velocity extending along the
upper mid—portion of the channel (with two distinct local maximum regions). The calculations
also show this overall pattern, with the compressible flow simulation reaching slightly higher
levels of velocity. The w—component of velocities agree fairly well in the overall location of high
and low velocity regions. However, the region of +w velocity seems to be underpredicted in the

calculations.
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Figure 5.25 shows a comparison of the TKE and TDS values at location D3. The SRA
data shows high values of TKE and TDS along the trips strip wall surfaces with a medium level
region spanning along the upper and left hand sides of the channel. The simulations also show
high regions near the trip strip surfaces, low values dominating the mid—channel core area, and
sightly elevated values along the left hand side wall. In general, the simulations appear to under-

predict TKE and TDS in the channel mid-section core area.

5.64 3-dimensional Streakline Particle Trace Comparisons

In order to gain additional insight into the velocity flow fields calculated by the channel
simulations, Figure 5.26 shows 3—d streakline particle trace comparisons for both the stationary
and rotating incompressible flow simulations. The traces, which are represented as ribbons (in
order to show the local "twisting” nature of the flow) are introduced at the inlet plane (i = 1).

Four different color traces are presented at the following (j, k) grid point locations. Blue;
at 10,3020,30 and 30,30. Pink; at 10,20 20,20 and 30,20. Green; at 10,1020,10 and 30,10. And
finally Purple; at 15,15 15,25 25,15 and 25,25. There are a lot of interesting detail features
shown by the traces. Two general observations are noted here. First, there are dramatic differ-
ences caused by rotation (as should be expected by the discussion of the previous section). Sec-
ondly, its interesting to note that the particle motions do not appear to “repeat” their pattern over
the length of the channel. This indicates that the single trip strip pitch "conveyor-belt” assump-
tion, although very useful for the grid sensitivity study, does not completely capture the full

channel trip strip flow field effects.

5.65 ”Conveyor-belt” Segment Versus Channel Simulations

It is of interest to compare the »conveyor-belt” simulation grid study results of Figure
5.11 view (c), to that of the rotating compressible flow channel simulation. Figure 5.27, view (a)
shows the secondary flow velocity fields for the rotating channel compressible flow simulation
at i—plane =760 (see Figure 5.12), compared to view (b) which shows the »conveyor—belt” rotat-
ing channel segment simulation, which had the same compressible flow conditions, wall integra-
tion scheme, and grid geometry. Both views show two clearly defined vortices, that are in similar
channel locations and rotating in the same fashion. The upper vortex appears to be almost the

same relative location, whereas the lower vortex for the channel simulation view (a), is shifted
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slightly down and toward the lower left hand side of the channel. It should also be noted that the
small differences between views (a & b), could in part be related to the fact that the radial (y—axis
location) for the “conveyor-belt” simulation inlet i—plane, was at y = 26.314 inches (66.83 cm)
versus 24.5475 inches (62.35 cm) for channel simulation. This difference occurred due to the
fact that the "conveyor—belt” segment location was determined prior to the point where it was
decided that the channel simulations would not extend to that radial location (due to the addition-
al computational grid required). Due to the difference in the radial locations, the flow field will
be modified slightly by a change in the induced centrifugal acceleration.

However, that being said, the agreement between these two simulations is excellent, es-
pecially when you consider that the ”conveyor-belt” simulation had a computational domain of
100,386 grid points (less than 6%) of the 1,708,083 grid points required for the full channel sim-
ulation. Clearly, the “conveyor-belt” boundary condition logic worked well, and has the poten-
tial for providing insight to streamwise repeating geometry flows well beyond the scope of the

grid sensitivity results presented here.

5.66 Heat Transfer Results

Once the four channel simulations had been completed, the resulting NASTAR output
files were post—processed in order to acquire heat transfer information. A local channel heat

transfer coefficient was defined as,

q
h = (21)

air inle()

Where Ty, was set to a constant value of wall temperature (see Table 5.1), and Ty;; jpler Was
defined as the integrated average inlet plane static temperature. The heat transfer coefficient can

be written in a non—dimensionalized Nusselt number form as,

h D,
k

Nu = (22)

air
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Where, Dy, is the channel hydraulic diameter, and where the air properties are based on the aver-
age of the wall and air-inlet temperatures. The Nusselt number can be represented as non—di-

mensionalized Nusselt number ratio by using the fully developed turbulent pipe flow equation,

- 0.8 _ 0.6
Nu pipe 0.021Re  Pr (23)
N Nu 24)
u .=
ratio
Nupipe

The heat transfer results are presented in terms of this Nusselt number ratio.

Figure 5.28 shows a comparison of the stationary (and rotating channel) Nusselt number
ratios for the incompressible flow simulations. Results are presented for the upper (trailing side)
and lower (leading side) channel surfaces. View (a) shows for the upper stationary channel sur-
face, and the decay in Nusselt number ratio just downstream of the channel inlet plane. This
effect is caused as the thermal boundary layer grows from its initial starting point at the channel
inlet. The secondary flow induced by the skewed trip strip pattern, then creates the classical
“high h” regions downstream of each of the trip strips. These patterns are caused as the upper
channel counter—clockwise secondary flow vortex (see Figure 5. 16) is driven into the upper wall
surface and thins the local thermal boundary layer. Nusselt number ratio patterns observed in
views (b), (c), and (d), are the result of similar interactions between the induced secondary flow
vortices and the trip strip wall surfaces.

Figure 5.28 view (c) show the effect of rotation for the trailing side channel surface. Nus-
selt ratios are increased over that of the stationary case . View (d) shows a decrease in the Nusselt
ratios relative to the stationary channel (a quantitative comparison of these effects is presented
later in the discussion of Figures 5.30 thru 5.35). This increase on the trailing side trip strip sur-
face, and decrease on the leading side surface is consistent with the trends shown in the exper-

imental results of Johnson et al., 1993.

Figure 5.29 shows a comparison of the stationary (and rotating channel) Nusselt number
ratios for the compressible flow simulations. Results are presented for the upper (trailing side)

and lower (leading side) channel surfaces. The compressible flow results are nearly identical to
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the incompressible results presented in Figure 5.28. Itis expected that the density variations (that
compressible flow allows for) should have an impact on both the velocity field and the wall sur-
face heat transfer (see Johnson et al., 1993). However, at the low (0.053) Ap/p ratio that the CFD
simulations were run at (required in order to match the UTRC experiments), the differences are

very small.

Figure 5.30 shows a comparison of the stationary (and rotating channel) Nusselt ratios,
along the channel centerline, for the incompressible flow simulations. Results are presented for
the upper (trailing side) and lower (leading side) channel surfaces. View (a) shows that the rotat-
ing trailing side Nusselt ratios are higher (in most locations) than those for the stationary upper
side channel surface. View (b) shows the reverse trend, where the rotating leading side Nusselt
ratios are lower than those for the stationary lower side channel surface. Figure 5.31 presents the
same information as Figure 5.30 over a limited y—axis range of 24 to 25 inches (60.96 to 63.50
cm), in order more easily show the rotational effects on Nusselt ratio for this incompressible flow

case.

Also shown in Figure 5.30 is the available wall-T/c (wall thermocouple) data from
NASA contact NAS3-26618 Task 30 (currently in progress at UTRC), which correspond to the
four channel simulation conditions. The symbols shown in view (a) correspond to T/c 10, and
those in view (b) correspond to T/c 7 (see also Figures 5.2 & 5.12). Data from T/c locations 8 & 9
were not considered reliable (based on discussions with UTRC), and are not presented here. Un-
fortunately, at the time this report was written, liquid—crystal (surface contour) test results were

not yet available from UTRC.

Figure 5.30 view (b) shows four UTRC data points at wall-T/c 7 for the lower channel
surface. This location is in the channel entrance region upstream of the first trip strip. Three data
points are presented for the stationary channel test case at 13k, 26k, and 55k Reynolds number,
and one data point is presented at Re equal to 26k for the rotating channel case. For Re equal to
26k (closest to the CFD simulation conditions), the data like the simulations indicate that Nup,io
is decreased due to rotation. The stationary channel data points at 13k & 55k Re show a consis-

tent trend in that they are higher than the rotating case.
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Horizontal lines have been drawn through the data points in order to to extend the trends
to just upstream of the first trip strip. This was done in order to better compare the test points to
the channel simulations. The UTRC channel entrance extends further upstream than the CFD
channel simulations (whose entrance location was set by the SRA planes Al & D1). The Nuratio
level from the UTRC test conditions (ranging between 1.0 & 2.0) reflect being at a "decayed”
Jevel of turbulent pipe flow downstream of a typical channel entrance location. This would be
consistent with the channel simulations at a point just upstream of the first trip strip where the
Nu,atio values have decayed to their lowest level downstream of the channel entrance plane. At
this location the simulations compare within 15% of the data for the stationary channel test case,

and within 30% for the rotating channel conditions.

Figure 5.30 view (a) shows four UTRC data points at wall-T/c 10 for the upper channel
surface. Three data points are presented for the stationary channel test case at 13k, 26k, and 55k
Reynolds number, and one data point is presented at Re equal to 26k for the rotating channel test
case. For Re equal to 26k, the data and the channel simulations both indicate that Nugao is rela-
tively unaffected by rotation at this location. The stationary channel Nugaio at 13k Re is nearly
identical to the 26k case. However, the 55k Re case indicates a higher level of augmentation.
Although the overall trends between the data and the simulations are consistent at this location,

the absolute level of Nugaio is overpredicted by approximately 80%.

Figure 5.32 shows a comparison of the stationary (and rotating channel) Nusselt ratios,
along the channel centerline, for the compressible flow simulations. Results are presented for
the upper (trailing side) and lower (leading side) channel surfaces. View (a) shows that the rotat-
ing trailing side Nusselt ratios are higher than those for the stationary upper side channel surface.
View (b) shows the reverse trend, where the rotating leading side Nusselt ratios are lower than
those for the stationary lower side channel surface. Figure 5.33 presents the same information as
Figure 5.32 over a limited y—axis range, in order more easily show the rotational effects on Nus-
selt ratio for this compressible flow case. Alsoshownin Figure 5.32 (for reference) are the same

UTRC data points previously discussed in connection with Figure 5.30.

Figure 5.34 shows Nusselt number ratios, along the stationary channel centerline, for the

incompressible and compressible flow simulations. View (a) and (b) both show that the calcula-
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tions are essentially independent of density variation effects, as expected for non—rotating flows
dominated by forced convection (see Hajek et al., 1991). Figure 5.35 shows Nusselt number
ratios, along the rotating channel centerline, for the incompressible and compressible flow simu-
lations. Both view (a) and (b) indicate slightly higher Nusselt ratios for the compressible flow

simulations.

One final Nusselt number ratio comparison is made (in Figure 5.36) between the station-
ary channel compressible flow simulation results, and the CFD solution from Case 1 of Stephens
etal., 1995. As was previously discussed in Section 5.53, Stephens numerically simulated a sta-
tionary channel geometry containing an alternating pattern of 5 skewed trip strips on the top and
bottom walls with; p/e =5, e/H = 0.1, H/W = 1.0, a0 = 45 degrees, Re = 25,000, (an identical
geometry to the current study, except for the total number of trip strips and channel entrance and
exit lengths). Stephens’ results, were presented as a Stanton number ratio Stqpped/Stsmooth- I
general, Stanton number ratio’s are numerically identical to Nusselt number ratio’s. However,
Stsmooth Was based on a calculated smooth channel simulation vs the current study, where Nup;pe
was based on a (constant) value from equation (23). Unfortunately, the 3—dimensional variation
in Stgmooth along the channel surface was not reported. Therefore, there was no way to “back

calculate” in order to put the the heat transfer ratios on an “exact” equal footing.

Figure 5.36 shows Stephens’ results in view (a) compared to a similar wall section in
view (b) from the lower side stationary channel compressible flow simulation. The channel en-
trance region for Stephens’ calculation (not shown here) extends 5.75 trip strip pitches (along the
lower edge of the figure) before the flow reaches the first trip strip. In contrast, the left hand side
of view (b) shows the inlet plane for the current study. Both views show similar regions of high
heat transfer downstream of each trip strip (along the bottom edge of the figures). These regions
are caused as the lower channel secondary flow vortex is driven into the trip strip wall surface and

thins the local thermal boundary layer.

In general, the results presented in the current study are about 250% (2.5x) higher than
those predicted by Stephens. Differences in the entrance region (upstream of the 1st trip strip)
would be expected due to the different channel inlet lengths, and the relative rates of Nuggio

decay due to the thermal boundary layer growth from the inlet plane. However, once the flow has
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entered the trip trip region these differences should diminish. The channel inlet Ap/p density
ratio for Stephens was 0.143 versus 0.053 for the current study. However, the differences inden-
sity (or wall to bulk fluid temperature driving potential) should not matter for this stationary
channel simulation which is dominated by forced convection effects. It should be noted however
that Stephens assumed the two sooth side walls were insulated versus the current study where the
side walls were held to the same constant wall temperature as the trip strip surfaces. Unfortunate-
ly, at the time that this report was written, all of the issues relating to the relative differences in

heat transfer level observed in Figure 5.36 had not been resolved.

5.67 Pressure Loss Results

At the same time that the NASTAR output files were post-processed to acquire heat
transfer information, channel static pressure loss and non—dimensionalized friction factor quan-

tities were also calculated. A channel friction factor can be defined as,

f= <£> D, (25)
AX 2pV2

Where AP is the difference between inlet and exit plane integrated average static pressures, over
the channel length AX. For this particular simulation geometry it was assumed that the calcu-
lated APgagc would be essentially equal to APiorar. This assumption was based on the fact that
the inlet & exit plane locations have the the same smooth wall cross—sectional shape, the exit
plane pressures were calculated far downstream of the last trip strip, and the inlet plane pressures
were held at a uniform value at the inlet. The hydraulic diameter, density and velocity were de-
termined at the channel inlet location. The friction factor can be represented as non—dimen-

sionalized friction factor ratio by using the turbulent pipe flow friction coefficient equation,

-0.2
fipe = 0.046Re (26)
f
fratio = f . 27
pipe
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The AP quantities determined for the rotating channel simulations had the rotating pres-

sure “pumping” effects removed. This was done by subtracting the channel AP by,
2
GG
2RT \ exit inle (28)

Using this procedure, the following values were calculated from the four channel simula-

pumping exit inlet

tions,

Table 5.3 Calulated Channel Pressure Loss & Friction Factor Quantities

Stationary Stationary Rotating Rotating

Incompr Compr Incompr Compr

AP psia 0.0170 0.0182 0.0151 0.0244
(N/mz) (117.22) (125.49) (104.11) (168.24)
f 0.0551 0.0588 0.0488 0.0789
f ratio 9.0561 9.6734 8.0334 12.9779

In order to compare these results to a similar channel geometry from the P&W data base,
the friction factors were recalculated using AX equal to exactly 14 trip strip pitches. In addition,
the channel AP was modified by subtracting the channel pressure loss do to the smooth channel

entrance and exit lengths. The friction factor quantities then become,

Table 5.4 Corrected Channel Friction Factor Quantities

Stationary Stationary Rotating Rotating
Incompr Compr Incompr Compr
f o 0.0730 0.0781 0.0645 0.1056
f ratio 12.005 12.848 10.608 17.363
corr
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The corrected friction factor ratio values compare to a value of ~9.4 from the P&W data
base fora; p/e=5,e/H=0.081, H/W = 1.0, and o. = 45 degrees. Unfortunately, an exact case with
a e/H of 0.01 was not available. However, other P&W data points where e/H was matched (but
H/W was not), indicated that the friction factor ratio was probably not affected significantly by

the 20% difference in e/H level.

A review of the results presented in Table 5.4 show that these benchmark simulations
appear to overpredict the level of channel friction factor. The average frario value for the station-
ary channel simulations is about 30% higher than the P&W database. The rotating channel frti0
averages about 50% higher, with a incompressible vs compressible flow range of (13% to 85%

higher) than the stationary channel P&W data base.
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6. CONCLUSIONS - EXPERIMENTAL PROGRAM

Velocity measurements were obtained in passages having skewed trip strips with cross
sections of 0.5” x0.5” and 1.0”x0.5”. The passage is representative of internal cooling
passages used in turbine blades. The measurements were obtained at Reynolds number of
25,000 (based on the hydraulic diameter of the square passage) and Rotation numbers of 0.0
and 0.24. The following conclusions are the main findings of this investigation.

6.1  Stationary measurements (Rotation number = 0.0)

1. The combination of outward flow and trips skewed at -45° in the first passage leads to
a two-vortex structure with upward velocity of 0.6 U, in the center and a downward velocity
of -0.95 U, at 0.09D from the wall. The development of secondary flows in the straight
passages is very significant as a consequence of the strong secondary flow generated by the
skewed trips. Skewed trips generate two high velocity regions of magnitude 1.50 Uy, close to
the side walls. Tse, et al. (1994) show that, for a smooth wall passage, the velocity near the
walls is less then 0.8 U,. Based upon the Nu-Re®® relationship, this change in flow
characteristics leads to a 66 % increase in heat transfer. The increase in heat transfer (100 to
200 %), observed by Johnson, et al. (1994) is attributed to the changes in streamwise

velocities and strong secondary flow induced by trips.

2. The combination of outward flow and trips skewed at -45° leads to a two-vortex
structure with upward velocity in the center and downward velocity near the wall. When both
trip orientation and flow direction are reversed, i.e., inward flow and trips skewed at +45°, the
vortices circulate in the same direction. When either trip orientation or flow direction alone is

reversed, the vortices circulate in the opposite direction.

3. Streamwise recirculation occurs at the exit of a turn in the 1.0” x 0.5” passage. The
negative velocity reaches a maximum value of -0.25 U, and the recirculation zone extends to
the 0.4 H location. Rotation induces strong inward flow, of the order of the bulk mean
velocity, on the leading side of the turn. This flow fills the velocity deficit and eliminates the

recirculation zone.
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62 Rotating measurements (Rotation number = 0.24)

4. The interaction of the secondary flows induced by skewed trips and by rotation
produces a swirling vortex and a corner recirculation zone. With the passage rotating in a
clockwise direction, the combination of outward flow and trips skewed at -45° generates
counter-clockwise swirl and a corner recirculation zone at the upper comer of the leading
side. The combination of inward flow and trips skewed at +45° generates clockwise swirl and
a corner recirculation zone at the upper corner of the trailing side. The combination of
outward flow and trips skewed at +45° generates clockwise swirl and a corner recirculation

zone at the lower corner of the trailing side.

5. With trips skewed at +45°, the secondary flow characteristics remain the same as the
flow propagates from the first passage to the first tun. With trips skewed at -45°, the corner
recirculation zone in the first passage is on the leading side and that in the first turn is on the
trailing side. Changes in the secondary flow structure enhance mixing and this is evident in a
20% increase in heat transfer in Johnson, et al. (1994). With trips skewed at +45°, the corner
recirculation zone in the second passage is on the trailing side and that in the second turn is on
the leading side. Therefore, the use of trips skewed at -45° is to be preferred in the outward

flow passage. The use of trips skewed at +45° is to be preferred in the inward flow passage.

6. With trips skewed at -45° in the outward flow passage and trips skewed at +45° in the
inward flow passage, the swirl and corner recirculation flow structure induced by skewed trips
leads to re-attachment of the cross-flow in the upper and lower comners and separation of the
cross-flow in the center on the low pressure side. Separation and re-attachment of the cross-
flow on the high pressure side is less noticeable because of the high cross-stream velocity
associated with the strong swirl. The secondary flow characteristics for stationary and

rotating cases are different on the low pressure side, but are similar on the high pressure side.

7. The secondary flows in the first and second turns are characterized by swirl and corner

recirculation. The swirl level in the first tumn is higher than the swirl level in the second. In
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the first turn, outward flow on the high pressure side is reinforced by centrifugal force. The
momentum is transferred to the inward flow on the low pressure side by convection. In the
second turn, the flow on the low pressure side is retarded by centrifugal force. In addition,
Coriolis forces are weakened in the second turn because it has a smaller radius than the first.
The comer recirculations are located near the concave side in both turns. The comner
recirculation in the first turn is weaker than that in the second. Centrifugal force directs flow
toward the concave side in the first turn and away from it in the second. The large difference
in heat transfer at the turns observed in Johnson et al. (1994) is partly attributed to these flow
effects.

8. Johnson, et al. (1994) show that, relative to the stationary smooth wall reference flow,
rotation increases the heat transfer from the pressure surface of the first passage in a passage
with skewed trips by up to 300%. In addition, their results show that buoyancy accounts for
an increase in heat transfer of 25%. The velocity measurements show that the increase in heat
transfer associated with the increase in streamwise velocity, swirl and re-attachment of cross-

flow in the inter-ribbed region are, respectively, 48%, <100% and >125%.

9. Rotation induces a marginal velocity increase on the high pressure side. Based upon
the Nu-Re®® correlation, the increase leads to a 5% increase in convective heat transfer. The
results of Johnson, et al. (1994) show that rotation increases the heat transfer from the trailing
surface by 30%. They further show that buoyancy increases the heat transfer from that
surface by 25%. Re-attachment of cross-flow in the inter-ribbed region increases the heat
transfer from the high pressure side by the same magnitude in both stationary and rotating

cases. This is consistent with the observations in Conclusion 6.

10. Rotation induces a large velocity deficity on the low pressure side. Based upon the
Nu-Re®® correlation, the deficit leads to a 50% decrease in convective heat transfer. The
results of Johnson, et al. (1994) show that rotation decreases the heat transfer from the low
pressure surface by 50%. They further show that buoyancy increases the heat transfer from

that surface by 20%. The influence of re-attachment of cross-flow in the inter-ribbed region



on the low pressure surface is reduced by 20% with rotation. This is consistent with the

observations in Conclusion 6.
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7.0 CONCLUSIONS - NUMERICAL SIMULATIONS

Benchmark numerical simulations for both stationary and rotating internal cooling chan-

- nels with skewed trip strips were performed. The computational effort was broken down into
two phases. In the first phase, a grid sensitivity study was performed (assuming periodically
fully developed flow) on a cooling channel computational domain limited to the region between
two adjacent trip strips. In the second phase, based on the results from the grid sensitivity study,
four trip strip channel simulations all utilizing the same channel geometry and computational
grid were presented. These simulations were then compared to experimental velocity field data
obtained by Scientific Research Associates, and selected heat transfer data acquired by the
United Technologies Research Center. A more detailed discussion of the conclusions presented

here can be found in Sections 5.2 thru 5.6 of this report.

7.1 Conclusions — Flow Field Initialization

1. One of the major objectives of the computational effort was to be able to compare all the
channel simulations to each other, in addition to the velocity field data of SRA and the heat
transfer data acquired by UTRC. Due to the differences between the experimental methods
(and working fluids) used by SRA and UTRC, it was necessary to develop a set of consistent
CFD simulation conditions that were close (but not identical) to either the experimental test

conditions of SRA or that of UTRC (see Table 5.1)

7.2 Conclusions - Grid Sensitivity Study

1. Excellent agreement was found between the velocity, pressure, and temperature contours
calculated by NASTAR for the single trip strip pitch (channel segment) using the "conveyor—
belt” boundary condition logic, and the 2—d full length channel evaluation geometry.

2. Itappears that the use of wall functions for this skewed trip strip channel geometry, produces
entirely un-reliable secondary flow velocity field results. It was recommended that wall

functions not be used for the full channel simulations.

3. The baseline wall integration grid (i, j, k) of 66x39x39 produces results very similar to the

denser grid domain of 92x49x49 selected for the grid evaluation study.
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4. Although the two grids (discussed above) were less dense than that recommended by (Tse et

al., 1994 and Stephens et al., 1995), it was felt that for practical considerations that the upper
limit for jxk that could be duplicated (and runina reasonable time frame) for the four 15 trip

strip channel simulation geometries was 39x39.

7 3 Conclusions — Stationary Channel Simulations Compared to SRA Data

1.

The calculated incompressible (and nearly identical) compressible velocity vector fields at
channel location A2 show very good agreement with the SRA data in the channel core flow

region.

. The predicted velocity field along the channel walls is similar to the data. However, the cal-

culations show higher values at the wall surfaces in many locations.

_ The differences between the calculated flow field and the data at the walls, could be in part

due to the sparse nature of the SRA data sets near the wall, and the process used to interpolate

the data to the much denser CFD grid in the wall region.

. The overall agreement between the SRA data and the CFD calculations is (very good) for the

u, v, and w velocity field components.

. In general, the simulations appear to underpredict TKE and TDS in the channel mid-section

core area, but have reasonable agreement near the wall surfaces.

. The incompressible and compressible calculated velocity component results were virtually

identical for the stationary channel simulations.

7 4 Conclusions — Rotating Channel Simulations Compared to SRA Data

1.

The general conclusions for the rotating channel simulations (compared to the SRA data at

locations D2 & D3), are the same as 1 thru 5 presented above for the stationary channel.

2. Only very minor differences were observed between the incompressible and compressible

flow simulations (see heat transfer conclusions below).

7.5 Conclusions — ”Conveyor-belt” Segment Versus Channel Simulations

1. Based on the streakline particle trace comparisons shown in (Figure 5.26), the particle mo-

tions do not appear to ’repeat” their pattern over the length of the channel. This indicates that
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the single trip strip pitch “"conveyor—belt” assumption, although very useful for the grid sen-
sitivity study, does not completely capture the full channel trip strip flow field effects.

However, the overall agreement between the “conveyor-belt’ segment and the skewed trip
strip channel simulation was excellent, especially when you consider that the “conveyor—
belt” simulation had a computational domain of 100,386 grid points (less than 6%) of the
1,708,083 grid points required for the full channel simulation.

7.6 Conclusions — Heat Transfer Results

1.

The rotating channel (trailing side) Nusselt ratios were increased relative to the stationary
channel surface. The rotating channel (leading side) Nusselt ratios were decreased relative to
the stationary channel surface. These trends are consistent with the experimental observa-

tions of (Johnson et al., 1993) for rotating channel flows.

. There are only very minor differences observed between the incompressible and compress-

ible flow simulations. It was expected that the density variations (that compressible flow
allows for) should have an impact on both the velocity field and the wall surface heat transfer.
However, at the low (0.053) Ap/p ratio that the CFD simulations were run at (required in

order to also match the UTRC experiments), the differences were very small.

. In the channel entrance region upstream of the first trip strip (at UTRC wall-T/c 7) CFD

simulations compare within 15% of the UTRC data for the stationary channel test case, and

within 30% for the rotating channel conditions for the lower channel surface.

. At the downstream channel location (UTRC wali-T/c 10, on the upper wall), the overall

trends between the data and the simulations are consistent. However the absolute level of

Nup,go is overpredicted by approximately 80%.

. Unfortunately, at the time this report was written, liquid—crystal (surface contour) test results

were not yet available from UTRC, so these comparisons could not be made for this report.

. The results presented in the current study are about 250% (2.5x) higher than those predicted

by (Stephens et al., 1995) for a stationary channel geometry identical to the current study,

except for the total number of trip strips and channel entrance and exit lengths.
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7.7 Conclusions — Pressure Loss Results

1. The average frasio value for the stationary channel simulations is about 30% higher than the

P&W data base value for this channel geometry.

2. The rotating channel 5o averages about 50% higher, with aincompressible vs compressible

flow range of (13% to 85% higher) than the stationary channel P&W data base value.
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Location
Al

A4

A6
Al
A8

Al0
All

Location
Bl
B2
B3
B4
BS
B6
B7
B8
B9
B10

TABLE 2.1

1 D downstream of inlet

7 D downstream of inlet

1 D upstream of the first tumn
First turn

1 D downstream of the first turn
1 D upstream of the second turn
Second turn

1 D downstream of the second turn
1 D upstream of the third turn

1 D downstream of the third turn
1 D upstream of exit

TABLE 2.2

1 D downstream of inlet

7 D downstream of inlet

1 D upstream of the first turn

First turn

1 D downstream of the first turn

1 D upstream of the second turn

1 D downstream of the second turn
1 D upstream of the third turn

1 D downstream of the third turn

1 D upstream of exit
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TABLE 2.3.1

Optical characteristics of the laser-Doppler Velocimeter employing forward scattering

Half angle of the beam interaction (°) 4.85
Fringe spacing (um) 3.04
Number of fringes without frequency shift 14
Diameter of control volume at 1/e? intensity (um) 42.0
Length of control volume at 1/e? intensity (jum) 738
Maximum frequency shift (Mhz) 9.0
Frequency to velocity conversion (ms”/Mhz) 3.04
TABLE 2.3.2
Optical characteristics of the laser-Doppler Velocimeter employing back scattering
Half angle of the beam interaction (°) 2.43
Fringe spacing (um) 6.06
Number of fringes without frequency shift 14
Diameter of control volume at 1/¢? intensity (um) 84.0
Length of control volume at 1/¢” intensity (um) 2944
Maximum frequency shift (Mhz) 9.0
Frequency to velocity conversion (ms™/Mhz) 6.06
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Location
Cl

C4
(6]
Cé
C7
C8
Cc9
C10
Cll1
Ci12
C13

Location
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13

TABLE 2.4

1, 1 D downstream of the inlet
4, 4 D downstream of the inlet
7, 7 D downstream of the inlet
10, 10 D downstream of the inlet
12, 12 D downstream of the inlet

T I |

15, First tumn

18, 1 D downstream of the first turn

20, 3 D downstream of the first turn
25.5, 8.5 D downstream of the first turn
=27.5, 10.5 D downstream of the first tum
x/D = 29.5, Second turn

x/D = 31.5, 1 D downstream of the second turn
x/D = 36.5, 6 D downstream of the second turn

5555555550

TABLE 2.5

1 D downstream of the inlet

4 D downstream of the inlet

7 D downstream of the inlet

0, 10 D downstream of the inlet

12, 12 D downstream of the inlet

15, First turn

17.5, 1 D downstream of the first turn
19.5, 3 D downstream of the first turn
25.5, 9 D downstream of the first turn
x/D =21.5, 11 D downstream of the first turn
x/D =29.5, Second tumn

x/D = 31.5, 1 D downstream of the second turn
x/D = 36.5, 6 D downstream of the second turn

nmn

i

L,
4’
7,
1

555555555
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SRA Rig View from outside of model "looking in”

e el

Leading Side of Model "Top Edge” of SRA Rig

Figure 2.2 - Measuring Locations of Passage 1,
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SRA Rig View from outside of model "looking in”

Leading Side of Model “Bottom Edge" of SRA Rig

Figure 2.3 - Measuring Locations of Passage 2.

78



Differences Between UTRC & SRA Rigs

SRA Rig View from outside of mode! "looking in”

Figure 2.4 - Differences between UTRC & SRA rigs.
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Figure 3.1 - Velocities at location Al, 1 D downstream of the inlet.
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Figure 3.4 - Velocities at location A4, the first turn,
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Figure 3.5 - Velocities at location A5, 1 D downstream of the first turn.
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Figure 3.6 - Velocities at location A6, 1 D upstream of the second turn.
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Figure 3.7 - Velocities at location A7, the second turn,
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Figure 3.8 - Velocities at location A8, 1 D downstream of the second turn.
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Figure 3.9 - Velocities at location A9, 1 D upstream of the third turn.
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Figure 3.10 - Velocities at location A10, 1 D downstream of the third turn.
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Figure 3.11 - Velocities at location A11, 1 D upstream of the exit.

92

z/Z =1

2/7 =1



v/H =1

175
i 1.50
] 1.00
| 0.75
0.50
025
0.00

z/7 = ~1
z/Z = 1

y/H = -1 v/H = -1
3.12.1 3.12.2

Fijure 3.12 - Velocities at location D1, 1 D downstream of the inlet.
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Fiqure 3.13 - Velocities at location D2, 4 D downstream of the inlet.
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Figure 3.14 - Velocities at location D3, 7 D downstream of the inlet.
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Figure 3.15 - Velocities at location N4, 10D downstream of the inlet.
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Figure 3.16 - Velocities at location D5, 12 D downstream of the inlet.
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Figure 3.18 - Velocities at location D7, 1 D downstream of the first turn,
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Figure 3.19 - Velocities at location D8, 3 D downstream of the first turn.
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Figure 3.20 - Velocities at location D9, 9 D downstream of the first turn.
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Figure 3.21 - Velocities at location D10, 11 D downstream of the first turn.
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Figure 3.22 - Velocities at location D11, the second turn.
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Figure 3.23 - Velocities at location D12, 1 D downstream of the second turn.
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Fiqure 4,1 - Velocities at location Bl, 1 D downstream of the inlet.
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Figure 4.2 - Velocities at location B2, 7 D downstream of the inlet.
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Figure 4.3 - Velocities at location B3, 1 D upstream of the first turn.
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Figure 4.4 - Velocities at location B4, the first turn.
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Figure 4.5 - Velocities at location B5, 1 D downstream of the first turn.
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Figure 4.6 - Velocities at location B6, 1 D upstream of the second turn.
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Figure 4.7 - Velocities at location B7, 1 D downstream of the second turn.
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Figure 4.8 - Velocities at Tocation B8, 1 D upstream of the third turn,
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Figure 4.9 - Velocities at Tocation B9, 1 D downstream of the third turn.
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Figure 4.10 - Velocities at Jocation B10, 1 D upstream of the exit.
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Figure 4.11 - Velocities at location C1, 1 D downstream of the inlet.
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Figure 4,12 - Velocities at location C2 - 4 D downstream of the inlet,
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Figure 4.13 - Velocities at Tocation C3, 7 D downstream of the inlet.
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Figure 4.14 - Velocities at location C4, 10 D downstream of the inlet,
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Figure 4.15 - Velocities at location C5, 12 D downstream of the inlet.
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Figure 4.16 - Velocities at location C6, the first turn,
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Figure 4,17 - Velocities at location C7, 1 D downstream of the first turn.
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Figure 4,18 - Velocities at location C8, 3 D downstream of the first turn.
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Figure 4,19 - Velocities at location C9, 8.5 D downstream of the first turn.
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Figure 4.20 - Velocities at location C10, 10.5 D downstream of the first turn.
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Figure 4.22 - Velocities at location €12, 1 D downstream of the second turn.
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Figure 4.23 - Velocities at location C13, 6 D downstream of the second turn.
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UTRC Rig Drawings View from outside of model "looking in”
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Figure 5.1 Original Rig Drawings from UTRC
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UTRC Rig View from outside of model "looking in”

Trailing Side of Model "Bottom Edge of UTRC ng (b)

Leadlng Side of Model "Bottom Edge” of UTRC Rig

- First (a) and last (b) flowpath tripstrips on SRA rig trailing side

Figure 5.2 UTRC Experimental Heat Transfer Rig
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SRA Rig View from outside of model "looking in”

Trailing Side of Model "Top Edge” of SRA Rig

Leading Side of Model "Top Edge” of SRA Rig (b)

— First (a) and last (b) flowpath tripstrips on SRA rig leading side

Figure 5.3 SRA Experimental Velocity Field Rig
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SRA Rig View from outside of model "looking in”

Trailing Side of Model "Top Edge” of SRA Rig
e/ e i 8 Y

Leading Side of Model "Top Edge” of SRA Rig

Figure 5.4 Differences Between the UTRC and SRA Experimental Rigs
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Figure 6.5 2—d Channel Computational Grid for the "Conveyor—belt” BC Evaluation Study
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Figure 5.6a 2—d Channel Streamwise Component Velocity Contours
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Figure 5.6b Velocity Contours with Channel Height Expanded
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Figure 5.9 Comparison of Static Temperature Contours
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Figure 5.10 3—d Skewed Trip Strip "Conveyor—belt” Channel Segment Grid
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-— ‘Channel Rotation

(@) Stationary Channel Segment (b) Rotating Channel Segment, —555 rpm
Wall Integration, Grid (92x49x49) Wall integration, Grid (92x49x49)
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(c) Rotating Channel Segment, —555 rpm (d) Rotating Channel Segment, —555 rpm
Wall Integration, Grid (66x39x39) Wall Functions, Grid (67x31x31)

Figure 5.11 Secondary Flow Velocity Field Results from the 3—d Skewed Trip Strip
Channel Segment "Conveyor—belt” Grid Study Simulations
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Figure 5.15 SRA Data (and CFD Inlet Plane BC's) at Stationary Channel Location A1
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Figure 5.26 Streakiline Particle Trace Comparisons — Stationary vs Rotating Channel Simulations
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Figure 5.32 Channel Centerline Nusselt Ratio — Compressible Flow Simulations
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Figure 5.33 Channel Centerline Nusselt Ratio — Compressible Flow Simulations
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Figure 5.34 Channel Centerline Nusselt Ratio — Stationary Channel Simulations
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